22 research outputs found

    Study of the behaviour of reinforced masonry wallets subjected to diagonal compression through numerical modelling

    Get PDF
    Shear walls are subjected to flexure and shear efforts in conjunction with compressive stresses associated to the gravity loads. In shear mode, diagonal cracks develop at the unit-mortar interface or both at the unit-mortar interface and through units as result of a biaxial tension-compression stress state, which in unreinforced masonry generally mean the collapse. The brittle failures of unreinforced masonry shear walls, which are more remarkable with high axial loads, may be prevented by the use of steel reinforcement. Diagonal compression tests allow obtaining a good prediction of the tensile strength of masonry walls in this biaxial tension-compression stress state. This paper aims to study the behaviour of reinforced masonry in diagonal compression tests through numerical modelling. A series of diagonal compression tests carried out on concrete block masonry with distinct types of reinforcement’s arrangements are modelled using the software DIANA®. Results indicate that horizontal and vertical reinforcements applied in conjunct provide an increase on the shear strength and ductility. On the other hand, the application of horizontal reinforcements alone leads only to an increase of ductility

    Assessment of the flexural behavior of concrete block masonry beams

    Get PDF
    This paper focus on the experimental flexural behavior of masonry beams. In the sequence of the development of a novel structural solution for reinforced masonry walls at University of Minho, different possibilities for the construction of lintels with concrete block masonry have been tested. Reinforced concrete beams with three and two hollow cell concrete blocks and with different reinforcement ratios have been built and tested in a four point loading test configuration. It was clear that horizontal bed joint reinforcement increased the ultimate flexure capacity as well as the ultimate deflection, leading to much more ductile responses. Moreover, it was also clear that a more deep analysis should be made regarding the role of the compressive strength of masonry in the parallel direction to the bed joints on the global behavior of the masonry beams.This work was partly supported by contract DISWALL – “Development of innovative systems for reinforced masonry walls” – COOP-CT-2005-018120 from the European Commission. The first author was supported by the Programme AlBan, the European Union Programme of High Level Scholarships for Latin America, Scholarship nº E06D100148BR

    Influence of the geometry of units and of the filling of vertical joints in the compressive and tensile strength of masonry

    Get PDF
    Attention is given to the mechanical properties of concrete block masonry, with respect to its compressive and tensile strength. These properties are important parameters in the in-plane lateral behaviour of masonry walls, determining their resistance and ductility. Such properties play also a central role when analytical and numerical analysis is used for simulating or predicting the behaviour of masonry structures. The influence of two selected parameters on the mechanical properties of masonry is discussed, namely the geometry of the units and the filling of the vertical joints. Results show that masonry under compression behaves as a homogeneous material and the stress-strain diagrams can be represented by a parabola similarly to what is suggested for structural concrete. in case of tensile strength, filling of vertical joints appears to influence considerably the tensile strength. The filling of the vertical joints increased the strength but lead to a more brittle behaviour.The first author was supported by the Programme Alβan, the European Union Programme of High Level Scholarships for Latin America, Scholarship nº E06D100148BR

    Masonry components

    Get PDF
    Masonry is a non-homogeneous material, composed of units and mortar, which can be of different types, with distinct mechanical properties. The design of both masonry units and mortar is based on the role of the walls in the building. Load-bearing walls relate to structural elements that bear mainly vertical loads, but can serve also to resist to horizontal loads. When a structural masonry building is submitted to in-plane and out-of-plane loadings induced by an earthquake for example, the masonry walls are the structural elements that ensure the global stability of the building. This means that the walls should have adequate mechanical properties that enable them to resist to different combinations of compressive, shear and tensile stresses.The boundary conditions influence the resisting mechanisms of the structural walls under in-plane loading and in a buildings the connection at the intersection walls are of paramount importance for the out-of-plane resisting mechanism. However, it is well established that the masonry mechanical properties are also relevant for the global mechanical performance of the structural masonry walls. Masonry units for load-bearing walls are usually laid so that their perforations are vertically oriented, whereas for partition walls, brick units with horizontal perforation are mostly adopted

    Developing innovative systems for reinforced masonry walls

    Get PDF
    The Commission of the European Communities has recently funded a CRAFT research project aimed at developing innovative systems for load and non-load-bearing reinforced masonry walls. The project involves twelve partners coming from four different European countries, among which there are universities and research centres, small and medium enterprises for the production of clay and concrete units and mortars, a company for advanced metal products and industrial associations of brick and block producers. The development of the reinforced masonry walls is based on the advancement of vertical reinforcement and fastenings, of mortar and concrete and on their integration with special clay and concrete blocks for the definition of new construction systems. The foreseen advantages are: new possibilities for masonry; more economical construction; quality increase for masonry walls; crack-free and earthquake resistant construction. The project follows three steps: assessment of the technical and economical feasibility of the envisaged construction technologies by means of extensive experimental and numerical activities; construction of prototypes as demonstration of the proposed technologies and materials; in situ testing to completely validate the systems. In the present contribution, an overview of the main objectives and steps of the project is given. Furthermore, the different construction systems that are being developed and designed are described. The main fields of application and the main technical problems encountered for the different construction systems is described, together with the experimental program outlined in order to characterize their mechanical behaviour under different serviceability and ultimate conditions

    Immunological profile of mice immunized with a polyvalent virosome-based influenza vaccine.

    Get PDF
    Background - Influenza A virus (IAV) causes respiratory disease in pigs and is a major concern for public health. Vaccination of pigs is the most successful measure to mitigate the impact of the disease in the herds. Influenza-based virosome is an effective immunomodulating carrier that replicates the natural antigen presentation pathway and has tolerability profile due to their purity and biocompatibility. Methods- This study aimed to develop a polyvalent virosome influenza vaccine containing the hemagglutinin and neuraminidase proteins derived from the swine IAVs (swIAVs) H1N1, H1N2 and H3N2 subtypes, and to investigate its effectiveness in mice as a potential vaccine for swine. Mice were immunized with two vaccine doses (1 and 15 days), intramuscularly and intranasally. At 21 days and eight months later after the second vaccine dose, mice were euthanized. The humoral and cellular immune responses in mice vaccinated intranasally or intramuscularly with a polyvalent influenza virosomal vaccine were investigated. Results- Only intramuscular vaccination induced high hemagglutination inhibition (HI) titers. Seroconversion and seroprotection (>?4-fold rise in HI antibody titers, reaching a titer of ??1:40) were achieved in 80% of mice (intramuscularly vaccinated group) at 21 days after booster immunization. Virus-neutralizing antibody titers against IAV were detected at 8 months after vaccination, indicating long-lasting immunity. Overall, mice immunized with the virosome displayed greater ability for B, effector-T and memory-T cells from the spleen to respond to H1N1, H1N2 and H3N2 antigens. Conclusions - All findings showed an efficient immune response against IAVs in mice vaccinated with a polyvalent virosome-based influenza vaccine
    corecore