18 research outputs found

    TCR signal strength controls thymic differentiation of discrete proinflammatory gamma delta T cell subsets

    Get PDF
    The mouse thymus produces discrete gd T cell subsets that make either interferon-g (IFN-g) or interleukin 17 (IL-17), but the role of the T cell antigen receptor (TCR) in this developmental process remains controversial. Here we show that Cd3g+/− Cd3d+/− (CD3 double-haploinsufficient (CD3DH)) mice have reduced TCR expression and signaling strength on gd T cells. CD3DH mice had normal numbers and phenotypes of ab thymocyte subsets, but impaired differentiation of fetal Vg6+ (but not Vg4+) IL-17- producing gd T cells and a marked depletion of IFN-g-producing CD122+ NK1.1+ gd T cells throughout ontogeny. Adult CD3DH mice showed reduced peripheral IFN-g+ gd T cells and were resistant to experimental cerebral malaria. Thus, TCR signal strength within specific thymic developmental windows is a major determinant of the generation of proinflammatory gd T cell subsets and their impact on pathophysiology

    Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Get PDF
    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Discovery of a novel ferredoxin from Azotobacter vinelandii containing two [4Fe-4S] clusters with widely differing and very negative reduction potentials.

    No full text
    Ferredoxins that contain 2[4Fe-4S]2+/+ clusters can be divided into two classes. The "clostridial-type" ferredoxins have two Cys-Xaa-Xaa-Cys-Xaa-Xaa-Cys-Xaa-Xaa-Xaa-Cys-Pro motifs. The "chromatium-type" ferredoxins have one motif of that type and one more unusual Cys-Xaa-Xaa-Cys-Xaa7-9-Cys-Xaa-Xaa-Xaa-Cys-Pro motif. Here we report the purification of a novel ferredoxin (FdIII) from Azotobacter vinelandii which brings to 12 the number of small [Fe-S] proteins that have now been reported from this organism. NH2-terminal sequencing of the first 56 amino acid residues shows that FdIII is a chromatium-type ferredoxin with 77% identity and 88% similarity to Chromatium vinosum ferredoxin. Studies of the purified protein by matrix-assisted laser desorption ionization-time of flight mass spectroscopy, iron analysis, absorption, circular dichroism, and electron paramagnetic resonance spectroscopies show that FdIII contains 2[4Fe-4S]2+/+ clusters in a 9,220-Da polypeptide. All 2[4Fe-4S]2+/+ ferredoxins that have been studied to date, including C. vinosum ferredoxin, are reported to have extremely similar or identical reduction potentials for the two clusters. In contrast, electrochemical characterization of FdIII clearly establishes that the two [4Fe-4S]2+/+ clusters have very different and highly negative reduction potentials of -486 mV and -644 mV versus the standard hydrogen electrode

    Delta T 14/Delta D 15 Azotobacter vinelandii ferredoxin I: creation of a new CysXXCysXXCys motif that ligates a [4Fe-4S] cluster.

    No full text
    In clostridial-type ferredoxins, each of the two [4Fe-4S]2+/+ clusters receives three of its four ligands from a CysXXCysXXCys motif. Azotobacter vinelandii ferredoxin I (AvFdI) is a seven-iron ferredoxin that contains one [4Fe-4S]2+/+ cluster and one [3Fe-4S]+/0 cluster. During the evolution of the 7Fe azotobacter-type ferredoxins from the 8Fe clostridial-type ferredoxins, one of the two motifs present changed to a CysXXCysXXXXCys motif, resulting in the inability to form a 4Fe cluster and the appearance of a 3Fe cluster in that position. In a previous study, we were unsuccessful in using structure as a guide in designing a 4Fe cluster in the 3Fe cluster position of AvFdI. In this study, we have reversed part of the evolutionary process by deleting two residues between the second and third cysteines. UV/Vis, CD, and EPR spectroscopies and direct electrochemical studies of the purified protein reveal that this DeltaT14/DeltaD15 FdI variant is an 8Fe protein containing two [4Fe-4S]2+/+ clusters with reduction potentials of -466 and -612 mV versus SHE. Whole-cell EPR shows that the protein is present as an 8Fe protein in vivo. These data strongly suggest that it is the sequence motif rather than the exact sequence or the structure that is critical for the assembly of a 4Fe cluster in that region of the protein. The new oxygen-sensitive 4Fe cluster was converted in partial yield to a 3Fe cluster. In known ferredoxins and enzymes that contain reversibly interconvertible [4Fe-4S]2+/+ and [3Fe-4S]+/0 clusters, the 3Fe form always has a reduction potential ca. 200 mV more positive than the 4Fe cluster in the same position. In contrast, for DeltaT14/DeltaD15 FdI, the 3Fe and 4Fe clusters in the same location have extremely similar reduction potentials

    Structure of C42D Azotobacter vinelandii FdI. A Cys-X-X-Asp-X-X-Cys motif ligates an air-stable [4Fe-4S]2+/+ cluster.

    No full text
    All naturally occurring ferredoxins that have Cys-X-X-Asp-X-X-Cys motifs contain [4Fe-4S](2+/+) clusters that can be easily and reversibly converted to [3Fe-4S](+/0) clusters. In contrast, ferredoxins with unmodified Cys-X-X-Cys-X-X-Cys motifs assemble [4Fe-4S](2+/+) clusters that cannot be easily interconverted with [3Fe-4S](+/0) clusters. In this study we changed the central cysteine of the Cys(39)-X-X-Cys(42)-X-X-Cys(45) of Azotobacter vinelandii FdI, which coordinates its [4Fe-4S](2+/+) cluster, into an aspartate. UV-visible, EPR, and CD spectroscopies, metal analysis, and x-ray crystallography show that, like native FdI, aerobically purified C42D FdI is a seven-iron protein retaining its [4Fe-4S](2+/+) cluster with monodentate aspartate ligation to one iron. Unlike known clusters of this type the reduced [4Fe-4S](+) cluster of C42D FdI exhibits only an S = 1/2 EPR with no higher spin signals detected. The cluster shows only a minor change in reduction potential relative to the native protein. All attempts to convert the cluster to a 3Fe cluster using conventional methods of oxygen or ferricyanide oxidation or thiol exchange were not successful. The cluster conversion was ultimately accomplished using a new electrochemical method. Hydrophobic and electrostatic interaction and the lack of Gly residues adjacent to the Asp ligand explain the remarkable stability of this cluster

    A T14C variant of Azotobacter vinelandii ferredoxin I undergoes facile [3Fe-4S]0 to [4Fe-4S]2+ conversion in vitro but not in vivo.

    No full text
    [4Fe-4S]2+/+ clusters that are ligated by Cys-X-X-Cys-X-X-Cys sequence motifs share the general feature of being hard to convert to [3Fe-4S]+/0 clusters, whereas those that contain a Cys-X-X-Asp-X-X-Cys motif undergo facile and reversible cluster interconversion. Little is known about the factors that control the in vivo assembly and conversion of these clusters. In this study we have designed and constructed a 3Fe to 4Fe cluster conversion variant of Azotobacter vinelandii ferredoxin I (FdI) in which the sequence that ligates the [3Fe-4S] cluster in native FdI was altered by converting a nearby residue, Thr-14, to Cys. Spectroscopic and electrochemical characterization shows that when purified in the presence of dithionite, T14C FdI is an O2-sensitive 8Fe protein. Both the new and the indigenous clusters have reduction potentials that are significantly shifted compared with those in native FdI, strongly suggesting a significantly altered environment around the clusters. Interestingly, whole cell EPR have revealed that T14C FdI exists as a 7Fe protein in vivo. This 7Fe form of T14C FdI is extremely similar to native FdI in its spectroscopic, electrochemical, and structural features. However, unlike native FdI which does not undergo facile cluster conversion, the 7Fe form T14C FdI quickly converts to the 8Fe form with a high efficiency under reducing conditions
    corecore