24 research outputs found

    Distribution of Hyperpolarized Xenon in the Brain Following Sensory Stimulation: Preliminary MRI Findings

    Get PDF
    In hyperpolarized xenon magnetic resonance imaging (HP 129Xe MRI), the inhaled spin-1/2 isotope of xenon gas is used to generate the MR signal. Because hyperpolarized xenon is an MR signal source with properties very different from those generated from water-protons, HP 129Xe MRI may yield structural and functional information not detectable by conventional proton-based MRI methods. Here we demonstrate the differential distribution of HP 129Xe in the cerebral cortex of the rat following a pain stimulus evoked in the animal's forepaw. Areas of higher HP 129Xe signal corresponded to those areas previously demonstrated by conventional functional MRI (fMRI) methods as being activated by a forepaw pain stimulus. The percent increase in HP 129Xe signal over baseline was 13–28%, and was detectable with a single set of pre and post stimulus images. Recent innovations in the production of highly polarized 129Xe should make feasible the emergence of HP 129Xe MRI as a viable adjunct method to conventional MRI for the study of brain function and disease

    Longevity of insulin receptor substrate1 null mice is not associated with increased basal antioxidant protection or reduced oxidative damage

    No full text
    Insulin receptor substrate-1 null (Irs1 −/−) mice are long lived and importantly they also demonstrate increased resistance to several age-related pathologies compared to wild type (WT) controls. Currently, the molecular mechanisms that underlie lifespan extension in long-lived mice are unclear although protection against oxidative damage may be important. Here, we determined both the activities of several intracellular antioxidants and levels of oxidative damage in brain, skeletal muscle, and liver of Irs1 −/− and WT mice at 80, 450, and 700 days of age, predicting that long-lived Irs1 −/− mice would be protected against oxidative damage. We measured activities of both intracellular superoxide dismutases (SOD); cytosolic (CuZnSOD) and mitochondrial (MnSOD), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT), and reduced glutathione (GHS). Of these, only hepatic CAT was significantly altered (increased) in Irs1 −/− mice. In addition, the levels of protein oxidation (protein carbonyl content) and lipid peroxidation (4-hydroxynonenal) were unaltered in Irs1 −/− mice, although the hepatic GSH/GSSG ratio, indicating an oxidized environment, was significantly lower in long-lived Irs1 −/− mice. Overall, our results do not support the premise that lifespan extension in Irs1 −/− mice is associated with greater tissue antioxidant protection or reduced oxidative damage
    corecore