45 research outputs found

    Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge about age-specific normal values for left ventricular mass (LVM), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV) and ejection fraction (EF) by cardiac magnetic resonance imaging (CMR) is of importance to differentiate between health and disease and to assess the severity of disease. The aims of the study were to determine age and gender specific normal reference values and to explore the normal physiological variation of these parameters from adolescence to late adulthood, in a cross sectional study.</p> <p>Methods</p> <p>Gradient echo CMR was performed at 1.5 T in 96 healthy volunteers (11–81 years, 50 male). Gender-specific analysis of parameters was undertaken in both absolute values and adjusted for body surface area (BSA).</p> <p>Results</p> <p>Age and gender specific normal ranges for LV volumes, mass and function are presented from the second through the eighth decade of life. LVM, ESV and EDV rose during adolescence and declined in adulthood. SV and EF decreased with age. Compared to adult females, adult males had higher BSA-adjusted values of EDV (p = 0.006) and ESV (p < 0.001), similar SV (p = 0.51) and lower EF (p = 0.014). No gender differences were seen in the youngest, 11–15 year, age range.</p> <p>Conclusion</p> <p>LV volumes, mass and function vary over a broad age range in healthy individuals. LV volumes and mass both rise in adolescence and decline with age. EF showed a rapid decline in adolescence compared to changes throughout adulthood. These findings demonstrate the need for age and gender specific normal ranges for clinical use.</p

    3.0 T cardiovascular magnetic resonance in patients treated with coronary stenting for myocardial infarction: evaluation of short term safety and image quality

    Get PDF
    Purpose To evaluate safety and image quality of cardiovascular magnetic resonance (CMR) at 3.0 T in patients with coronary stents after myocardial infarction (MI), in comparison to the clinical standard at 1.5 T. Methods Twenty-five patients (21 men; 55 ± 9 years) with first MI treated with primary stenting, underwent 18 scans at 3.0 T and 18 scans at 1.5 T. Twenty-four scans were performed 4 ± 2 days and 12 scans 125 ± 23 days after MI. Cine (steady-state free precession) and late gadolinium-enhanced (LGE, segmented inversion-recovery gradient echo) images were acquired. Patient safety and image artifacts were evaluated, and in 16 patients stent position was assessed during repeat catheterization. Additionally, image quality was scored from 1 (poor quality) to 4 (excellent quality). Results There were no clinical events within 30 days of CMR at 3.0 T or 1.5 T, and no stent migration occurred. At 3.0 T, image quality of cine studies was clinically useful in all, but not sufficient for quantitative analysis in 44% of the scans, due to stent (6/18 scans), flow (7/18 scans) and/or dark band artifacts (8/18 scans). Image quality of LGE images at 3.0 T was not sufficient for quantitative analysis in 53%, and not clinically useful in 12%. At 1.5 T, all cine and LGE images were quantitatively analyzable. Conclusion 3.0 T is safe in the acute and chronic phase after MI treated with primary stenting. Although cine imaging at 3.0 T is suitable for clinical use, quantitative analysis and LGE imaging is less reliable than at 1.5 T. Further optimization of pulse sequences at 3.0 T is essential

    Cardiovascular magnetic resonance physics for clinicians: part I

    Get PDF
    There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained

    Assessment of renal function after conformal radiotherapy and intensity-modulated radiotherapy by functional H-1-MRI and (23) Na-MRI

    No full text
    Adjuvant radiochemotherapy (RCHT) improves survival of patients with locally advanced gastric cancer. Conventional three-dimensional conformal radiotherapy (3D-CRT) results in ablative doses to a significant amount of the left kidney, while image-guided intensity-modulated radiotherapy (IG-IMRT) provides excellent target coverage with improved kidney sparing. Few long-term results on IMRT for gastric cancer, however, have been published. Functional magnetic resonance imaging (fMRI) at 3.0 T including blood oxygenation-level dependent (BOLD) imaging, diffusion-weighted imaging (DWI) and, for the first time, Na-23 imaging was used to evaluate renal status after radiotherapy with 3D-CRT or IG-IMRT. Four disease-free patients (2 after 3D-CRT and 2 after IMRT; FU for all patients > 5 years) were included in this feasibility study. Morphological sequences, axial DWI images, 2D-gradient echo (GRE)-BOLD images, and Na-23 images were acquired. Mean values/standard deviations for (Na-23), the apparent diffusion coefficient (ADC), and R2* values were calculated for the upper/middle/lower parts of both kidneys. Corticomedullary Na-23-concentration gradients were determined. Surprisingly, IG-IMRT patients showed no morphological alterations and no statistically significant differences of ADC and R2* values in all renal parts. Values for mean corticomedullary Na-23-concentration matched those for healthy volunteers. Results were similar in 3D-CRT patients, except for the cranial part of the left kidney. This was atrophic and presented significantly reduced functional parameters (p = 0.001-p = 0.033). Reduced ADC values indicated reduced cell density and reduced extracellular space. Cortical and medullary R2* values of the left cranial kidney in the 3D-CRT group were higher, indicating more deoxygenated hemoglobin due to reduced blood flow/oxygenation. (Na-23) of the renal cranial parts in the 3D-CRT group was significantly reduced, while the expected corticomedullary Na-23-concentration gradient was partially conserved. Functional MRI can assess postradiotherapeutic renal changes. As expected, marked morphological/functional effects were observed in high-dose areas (3D-CRT), while, unexpectedly, no alteration in kidney function was observed in IG-IMRT patients, supporting the hypothesis that reducing total/fractional dose to the renal parenchyma by IMRT is clinically beneficial

    Should less motion sensitive T2-weighted BLADE TSE replace Cartesian TSE for female pelvic MRI?

    Get PDF
    To prospectively compare the diagnostic performance of a non-Cartesian k-space sampling T2-weighted TSE BLADE sequence with a conventional T2-weighted TSE sequence in female pelvic organs.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore