7,149 research outputs found
Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics
We describe how to generate an Einstein-Podolsky-Rosen (EPR) paradox between
a mesoscopic mechanical oscillator and an optical pulse. We find two types of
paradox, defined by whether it is the oscillator or the pulse that shows the
effect Schrodinger called "steering". Only the oscillator paradox addresses the
question of mesoscopic local reality for a massive system. In that case, EPR's
"elements of reality" are defined for the oscillator, and it is these elements
of reality that are falsified (if quantum mechanics is complete). For this sort
of paradox, we show that a thermal barrier exists, meaning that a threshold
level of pulse-oscillator interaction is required for a given thermal
occupation n_0 of the oscillator. We find there is no equivalent thermal
barrier for the entanglement of the pulse with the oscillator, nor for the EPR
paradox that addresses the local reality of the optical system. Finally, we
examine the possibility of an EPR paradox between two entangled oscillators.
Our work highlights the asymmetrical effect of thermal noise on quantum
nonlocality.Comment: 9 pages, 7 figure
Dynamical preparation of EPR entanglement in two-well Bose-Einstein condensates
We propose to generate Einstein-Podolsky-Rosen (EPR) entanglement between
groups of atoms in a two-well Bose-Einstein condensate using a dynamical
process similar to that employed in quantum optics. The local nonlinear S-wave
scattering interaction has the effect of creating a spin squeezing at each
well, while the tunneling, analogous to a beam splitter in optics, introduces
an interference between these fields that results in an inter-well
entanglement. We consider two internal modes at each well, so that the
entanglement can be detected by measuring a reduction in the variances of the
sums of local Schwinger spin observables. As is typical of continuous variable
(CV) entanglement, the entanglement is predicted to increase with atom number,
and becomes sufficiently strong at higher numbers of atoms that the EPR paradox
and steering non-locality can be realized. The entanglement is predicted using
an analytical approach and, for larger atom numbers, stochastic simulations
based on truncated Wigner function. We find generally that strong tunnelling is
favourable, and that entanglement persists and is even enhanced in the presence
of realistic nonlinear losses.Comment: 15 pages, 19 figure
Dynamical Quantum Memories
We propose a dynamical approach to quantum memories using an
oscillator-cavity model. This overcomes the known difficulties of achieving
high quantum input-output fidelity with storage times long compared to the
input signal duration. We use a generic model of the memory response, which is
applicable to any linear storage medium ranging from a superconducting device
to an atomic medium. The temporal switching or gating of the device may either
be through a control field changing the coupling, or through a variable
detuning approach, as in more recent quantum memory experiments. An exact
calculation of the temporal memory response to an external input is carried
out. This shows that there is a mode-matching criterion which determines the
optimum input and output mode shape. This optimum pulse shape can be modified
by changing the gate characteristics. In addition, there is a critical coupling
between the atoms and the cavity that allows high fidelity in the presence of
long storage times. The quantum fidelity is calculated both for the coherent
state protocol, and for a completely arbitrary input state with a bounded total
photon number. We show how a dynamical quantum memory can surpass the relevant
classical memory bound, while retaining a relatively long storage time.Comment: 16 pages, 9 figure
Unified criteria for multipartite quantum nonlocality
Wiseman and co-workers (Phys. Rev. Lett. 98, 140402, 2007) proposed a
distinction between the nonlocality classes of Bell's nonlocality, steering and
entanglement based on whether or not an overseer trusts each party in a
bipartite scenario where they are asked to demonstrate entanglement. Here we
extend that concept to the multipartite case and derive inequalities that
progressively test for those classes of nonlocality, with different thresholds
for each level. This framework includes the three classes of nonlocality above
in special cases and introduces a family of others.Comment: V2: corrected image display; V3: substantial changes including new
proofs, arguments, and result
EPR entanglement strategies in two-well BEC
Criteria suitable for measuring entanglement between two different potential
wells in a Bose- Einstein condensation (BEC) are evaluated. We show how to
generate the required entanglement, utilizing either an adiabatic two-mode or
dynamic four-mode interaction strategy, with techniques that take advantage of
s-wave scattering interactions to provide the nonlinear coupling. The dynamic
entanglement method results in an entanglement signature with spatially
separated detectors, as in the Einstein-Podolsky-Rosen (EPR) paradox.Comment: 4 pages, 4 figure
Bell inequalities for Continuous-Variable Measurements
Tests of local hidden variable theories using measurements with continuous
variable (CV) outcomes are developed, and a comparison of different methods is
presented. As examples, we focus on multipartite entangled GHZ and cluster
states. We suggest a physical process that produces the states proposed here,
and investigate experiments both with and without binning of the continuous
variable. In the former case, the Mermin-Klyshko inequalities can be used
directly. For unbinned outcomes, the moment-based CFRD inequalities are
extended to functional inequalities by considering arbitrary functions of the
measurements at each site. By optimising these functions, we obtain more robust
violations of local hidden variable theories than with either binning or
moments. Recent inequalities based on the algebra of quaternions and octonions
are compared with these methods. Since the prime advantage of CV experiments is
to provide a route to highly efficient detection via homodyne measurements, we
analyse the effect of noise and detection losses in both binned and unbinned
cases. The CV moment inequalities with an optimal function have greater
robustness to both loss and noise. This could permit a loophole-free test of
Bell inequalities.Comment: 17 pages, 6 figure
- …