75 research outputs found
Functional Integral Approach to the Single Impurity Anderson Model
Recently, a functional integral representation was proposed by Weller
(Weller, W.: phys.~stat.~sol.~(b) {\bf 162}, 251 (1990)), in which the
fermionic fields strictly satisfy the constraint of no double occupancy at each
lattice site. This is achieved by introducing spin dependent Bose fields. The
functional integral method is applied to the single impurity Anderson model
both in the Kondo and mixed-valence regime. The f-electron Green's function and
susceptibility are calculated using an Ising-like representation for the Bose
fields. We discuss the difficulty to extract a spectral function from the
knowledge of the imaginary time Green's function. The results are compared with
NCA calculations.Comment: 11 pages, LaTeX, figures upon request, preprint No. 93/10/
High-Intensity and High-Brightness Source of Moderated Positrons Using a Brilliant gamma Beam
Presently large efforts are conducted towards the development of highly
brilliant gamma beams via Compton back scattering of photons from a
high-brilliance electron beam, either on the basis of a normal-conducting
electron linac or a (superconducting) Energy Recovery Linac (ERL). Particularly
ERL's provide an extremely brilliant electron beam, thus enabling to generate
highest-quality gamma beams. A 2.5 MeV gamma beam with an envisaged intensity
of 10^15 s^-1, as ultimately envisaged for an ERL-based gamma-beam facility,
narrow band width (10^-3), and extremely low emittance (10^-4 mm^2 mrad^2)
offers the possibility to produce a high-intensity bright polarized positron
beam. Pair production in a face-on irradiated W converter foil (200 micron
thick, 10 mm long) would lead to the emission of 2 x 10^13 (fast) positrons per
second, which is four orders of magnitude higher compared to strong radioactive
^22Na sources conventionally used in the laboratory.Using a stack of converter
foils and subsequent positron moderation, a high-intensity low-energy beam of
moderated positrons can be produced. Two different source setups are presented:
a high-brightness positron beam with a diameter as low as 0.2 mm, and a
high-intensity beam of 3 x 10^11 moderated positrons per second. Hence,
profiting from an improved moderation efficiency, the envisaged positron
intensity would exceed that of present high-intensity positron sources by a
factor of 100.Comment: 9 pages, 3 figure
Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance
We propose to search for neutron halo isomers populated via -capture
in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the
or neutron shell model state reaches zero binding energy.
These halo nuclei can be produced for the first time with new -beams of
high intensity and small band width ( 0.1%) achievable via Compton
back-scattering off brilliant electron beams thus offering a promising
perspective to selectively populate these isomers with small separation
energies of 1 eV to a few keV. Similar to single-neutron halo states for very
light, extremely neutron-rich, radioactive nuclei
\cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and
short-range nuclear force allows the neutron to tunnel far out into free space
much beyond the nuclear core radius. This results in prolonged half lives of
the isomers for the -decay back to the ground state in the 100
ps-s range. Similar to the treatment of photodisintegration of the
deuteron, the neutron release from the neutron halo isomer via a second,
low-energy, intense photon beam has a known much larger cross section with a
typical energy threshold behavior. In the second step, the neutrons can be
released as a low-energy, pulsed, polarized neutron beam of high intensity and
high brilliance, possibly being much superior to presently existing beams from
reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics
Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with Beams of High Intensity and Large Brilliance
We study the production of radioisotopes for nuclear medicine in
photonuclear reactions or ()
photoexcitation reactions with high flux [()/s], small
diameter m and small band width () beams produced by Compton back-scattering of laser
light from relativistic brilliant electron beams. We compare them to (ion,np) reactions with (ion=p,d,) from particle accelerators like
cyclotrons and (n,) or (n,f) reactions from nuclear reactors. For
photonuclear reactions with a narrow beam the energy deposition in the
target can be managed by using a stack of thin target foils or wires, hence
avoiding direct stopping of the Compton and pair electrons (positrons).
isomer production via specially selected cascades
allows to produce high specific activity in multiple excitations, where no
back-pumping of the isomer to the ground state occurs. We discuss in detail
many specific radioisotopes for diagnostics and therapy applications.
Photonuclear reactions with beams allow to produce certain
radioisotopes, e.g. Sc, Ti, Cu, Pd, Sn,
Er, Pt or Ac, with higher specific activity and/or
more economically than with classical methods. This will open the way for
completely new clinical applications of radioisotopes. For example Pt
could be used to verify the patient's response to chemotherapy with platinum
compounds before a complete treatment is performed. Also innovative isotopes
like Sc, Cu and Ac could be produced for the first time
in sufficient quantities for large-scale application in targeted radionuclide
therapy.Comment: submitted to Appl. Phys.
Nucleon Spin-Polarisabilities from Polarisation Observables in Low-Energy Deuteron Compton Scattering
We investigate the dependence of polarisation observables in elastic deuteron
Compton scattering below the pion production threshold on the spin-independent
and spin-dependent iso-scalar dipole polarisabilities of the nucleon. The
calculation uses Chiral Effective Field Theory with dynamical Delta(1232)
degrees of freedom in the Small Scale Expansion at next-to-leading order.
Resummation of the NN intermediate rescattering states and including the Delta
induces sizeable effects. The analysis considers cross-sections and the
analysing power of linearly polarised photons on an unpolarised target, and
cross-section differences and asymmetries of linearly and circularly polarised
beams on a vector-polarised deuteron. An intuitive argument helps one to
identify kinematics in which one or several polarisabilities do not contribute.
Some double-polarised observables are only sensitive to linear combinations of
two of the spin-polarisabilities, simplifying a multipole-analysis of the data.
Spin-polarisabilities can be extracted at photon energies \gtrsim 100 MeV,
after measurements at lower energies of \lesssim 70 MeV provide high-accuracy
determinations of the spin-independent ones. An interactive Mathematica 7.0
notebook of our findings is available from [email protected]: 30 pages LaTeX2e, including 22 figures as 66 .eps file embedded with
includegraphicx; three errors in initial submission corrected. This
submission includes ot the erratum to be published in EPJA (2012) and the
corrections in the tex
Nucleon Polarizabilities from Deuteron Compton Scattering within a Green's-Function Hybrid Approach
We examine elastic Compton scattering from the deuteron for photon energies
ranging from zero to 100 MeV, using state-of-the-art deuteron wave functions
and NN-potentials. Nucleon-nucleon rescattering between emission and absorption
of the two photons is treated by Green's functions in order to ensure gauge
invariance and the correct Thomson limit. With this Green's-function hybrid
approach, we fulfill the low-energy theorem of deuteron Compton scattering and
there is no significant dependence on the deuteron wave function used.
Concerning the nucleon structure, we use Chiral Effective Field Theory with
explicit \Delta(1232) degrees of freedom within the Small Scale Expansion up to
leading-one-loop order. Agreement with available data is good at all energies.
Our 2-parameter fit to all elastic data leads to values for the
static isoscalar dipole polarizabilities which are in excellent agreement with
the isoscalar Baldin sum rule. Taking this value as additional input, we find
\alpha_E^s= (11.3+-0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and \beta_M^s =
(3.2-+0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and conclude by comparison to the
proton numbers that neutron and proton polarizabilities are essentially the
same.Comment: 47 pages LaTeX2e with 20 figures in 59 .eps files, using graphicx.
Minor modifications; extended discussion of theoretical uncertainties of
polarisabilities extraction. Version accepted for publication in EPJ
Predictive powers of chiral perturbation theory in Compton scattering off protons
We study low-energy nucleon Compton scattering in the framework of baryon
chiral perturbation theory (BPT) with pion, nucleon, and (1232)
degrees of freedom, up to and including the next-to-next-to-leading order
(NNLO). We include the effects of order , and , with
MeV the -resonance excitation energy. These are
all "predictive" powers in the sense that no unknown low-energy constants enter
until at least one order higher (i.e, ). Estimating the theoretical
uncertainty on the basis of natural size for effects, we find that
uncertainty of such a NNLO result is comparable to the uncertainty of the
present experimental data for low-energy Compton scattering. We find an
excellent agreement with the experimental cross section data up to at least the
pion-production threshold. Nevertheless, for the proton's magnetic
polarizability we obtain a value of fm, in
significant disagreement with the current PDG value. Unlike the previous
PT studies of Compton scattering, we perform the calculations in a
manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB)
expansion. The difference between the lowest order HBPT and BPT
results for polarizabilities is found to be appreciable. We discuss the chiral
behavior of proton polarizabilities in both HBPT and BPT with the
hope to confront it with lattice QCD calculations in a near future. In studying
some of the polarized observables, we identify the regime where their naive
low-energy expansion begins to break down, thus addressing the forthcoming
precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ
Spin-dependent cross sections from the three-body photodisintegration of He 3 at incident energies of 12.8 and 14.7 MeV
The first measurement of the three-body photodisintegration of polarized 3He using a circularly polarized photon beam has been performed at incident energies of 12.8 and 14.7 MeV. This measurement was carried out at the high-intensity γ-ray source located at Triangle Universities Nuclear Laboratory. A high-pressure 3He target, polarized via spin exchange optical pumping with alkali metals, was used in the experiment. The spin-dependent double- and single-differential cross sections from 3He(γ,n)pp for laboratory angles varying from 30° to 165° are presented and compared with state-of-the-art three-body calculations. The data reveal the importance of including the Coulomb interaction between protons in the three-body calculations
BOUT++: a framework for parallel plasma fluid simulations
A new modular code called BOUT++ is presented, which simulates 3D fluid
equations in curvilinear coordinates. Although aimed at simulating Edge
Localised Modes (ELMs) in tokamak X-point geometry, the code is able to
simulate a wide range of fluid models (magnetised and unmagnetised) involving
an arbitrary number of scalar and vector fields, in a wide range of geometries.
Time evolution is fully implicit, and 3rd-order WENO schemes are implemented.
Benchmarks are presented for linear and non-linear problems (the Orszag-Tang
vortex) showing good agreement. Performance of the code is tested by scaling
with problem size and processor number, showing efficient scaling to thousands
of processors.
Linear initial-value simulations of ELMs using reduced ideal MHD are
presented, and the results compared to the ELITE linear MHD eigenvalue code.
The resulting mode-structures and growth-rate are found to be in good agreement
(BOUT++ = 0.245, ELITE = 0.239). To our knowledge, this is the first time
dissipationless, initial-value simulations of ELMs have been successfully
demonstrated.Comment: Submitted to Computer Physics Communications. Revised to reduce page
count. 18 pages, 16 figure
Time Projection Chamber (TPC) detectors for nuclear astrophysics studies with gamma beams
Gamma-Beams at the HIS facility in the USA and anticipated at the ELI-NP facility, now constructed in Romania, present unique new opportunities to advance research in nuclear astrophysics; not the least of which is resolving open questions in oxygen formation during stellar helium burning via a precise measurement of the 12C() reaction. Time projection chamber (TPC) detectors operating with low pressure gas (as an active target) are ideally suited for such studies. We review the progress of the current research program and plans for the future at the HIS facility with the optical readout TPC (O-TPC) and the development of an electronic readout TPC for the ELI-NP facility (ELITPC)
- …