75 research outputs found

    Functional Integral Approach to the Single Impurity Anderson Model

    Full text link
    Recently, a functional integral representation was proposed by Weller (Weller, W.: phys.~stat.~sol.~(b) {\bf 162}, 251 (1990)), in which the fermionic fields strictly satisfy the constraint of no double occupancy at each lattice site. This is achieved by introducing spin dependent Bose fields. The functional integral method is applied to the single impurity Anderson model both in the Kondo and mixed-valence regime. The f-electron Green's function and susceptibility are calculated using an Ising-like representation for the Bose fields. We discuss the difficulty to extract a spectral function from the knowledge of the imaginary time Green's function. The results are compared with NCA calculations.Comment: 11 pages, LaTeX, figures upon request, preprint No. 93/10/

    High-Intensity and High-Brightness Source of Moderated Positrons Using a Brilliant gamma Beam

    Full text link
    Presently large efforts are conducted towards the development of highly brilliant gamma beams via Compton back scattering of photons from a high-brilliance electron beam, either on the basis of a normal-conducting electron linac or a (superconducting) Energy Recovery Linac (ERL). Particularly ERL's provide an extremely brilliant electron beam, thus enabling to generate highest-quality gamma beams. A 2.5 MeV gamma beam with an envisaged intensity of 10^15 s^-1, as ultimately envisaged for an ERL-based gamma-beam facility, narrow band width (10^-3), and extremely low emittance (10^-4 mm^2 mrad^2) offers the possibility to produce a high-intensity bright polarized positron beam. Pair production in a face-on irradiated W converter foil (200 micron thick, 10 mm long) would lead to the emission of 2 x 10^13 (fast) positrons per second, which is four orders of magnitude higher compared to strong radioactive ^22Na sources conventionally used in the laboratory.Using a stack of converter foils and subsequent positron moderation, a high-intensity low-energy beam of moderated positrons can be produced. Two different source setups are presented: a high-brightness positron beam with a diameter as low as 0.2 mm, and a high-intensity beam of 3 x 10^11 moderated positrons per second. Hence, profiting from an improved moderation efficiency, the envisaged positron intensity would exceed that of present high-intensity positron sources by a factor of 100.Comment: 9 pages, 3 figure

    Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    Full text link
    We propose to search for neutron halo isomers populated via γ\gamma-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the 4s1/24s_{1/2} or 3s1/23s_{1/2} neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new γ\gamma-beams of high intensity and small band width (\le 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the γ\gamma-decay back to the ground state in the 100 ps-μ\mus range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics

    Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with γ\gamma Beams of High Intensity and Large Brilliance

    Full text link
    We study the production of radioisotopes for nuclear medicine in (γ,xn+yp)(\gamma,x{\rm n}+y{\rm p}) photonuclear reactions or (γ,γ\gamma,\gamma') photoexcitation reactions with high flux [(1013101510^{13}-10^{15})γ\gamma/s], small diameter (100μ\sim (100 \, \mum)2)^2 and small band width (ΔE/E103104\Delta E/E \approx 10^{-3}-10^{-4}) γ\gamma beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,xxn+y + yp) reactions with (ion=p,d,α\alpha) from particle accelerators like cyclotrons and (n,γ\gamma) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow γ\gamma beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). (γ,γ)(\gamma,\gamma') isomer production via specially selected γ\gamma cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with γ\gamma beams allow to produce certain radioisotopes, e.g. 47^{47}Sc, 44^{44}Ti, 67^{67}Cu, 103^{103}Pd, 117m^{117m}Sn, 169^{169}Er, 195m^{195m}Pt or 225^{225}Ac, with higher specific activity and/or more economically than with classical methods. This will open the way for completely new clinical applications of radioisotopes. For example 195m^{195m}Pt could be used to verify the patient's response to chemotherapy with platinum compounds before a complete treatment is performed. Also innovative isotopes like 47^{47}Sc, 67^{67}Cu and 225^{225}Ac could be produced for the first time in sufficient quantities for large-scale application in targeted radionuclide therapy.Comment: submitted to Appl. Phys.

    Nucleon Spin-Polarisabilities from Polarisation Observables in Low-Energy Deuteron Compton Scattering

    Get PDF
    We investigate the dependence of polarisation observables in elastic deuteron Compton scattering below the pion production threshold on the spin-independent and spin-dependent iso-scalar dipole polarisabilities of the nucleon. The calculation uses Chiral Effective Field Theory with dynamical Delta(1232) degrees of freedom in the Small Scale Expansion at next-to-leading order. Resummation of the NN intermediate rescattering states and including the Delta induces sizeable effects. The analysis considers cross-sections and the analysing power of linearly polarised photons on an unpolarised target, and cross-section differences and asymmetries of linearly and circularly polarised beams on a vector-polarised deuteron. An intuitive argument helps one to identify kinematics in which one or several polarisabilities do not contribute. Some double-polarised observables are only sensitive to linear combinations of two of the spin-polarisabilities, simplifying a multipole-analysis of the data. Spin-polarisabilities can be extracted at photon energies \gtrsim 100 MeV, after measurements at lower energies of \lesssim 70 MeV provide high-accuracy determinations of the spin-independent ones. An interactive Mathematica 7.0 notebook of our findings is available from [email protected]: 30 pages LaTeX2e, including 22 figures as 66 .eps file embedded with includegraphicx; three errors in initial submission corrected. This submission includes ot the erratum to be published in EPJA (2012) and the corrections in the tex

    Nucleon Polarizabilities from Deuteron Compton Scattering within a Green's-Function Hybrid Approach

    Full text link
    We examine elastic Compton scattering from the deuteron for photon energies ranging from zero to 100 MeV, using state-of-the-art deuteron wave functions and NN-potentials. Nucleon-nucleon rescattering between emission and absorption of the two photons is treated by Green's functions in order to ensure gauge invariance and the correct Thomson limit. With this Green's-function hybrid approach, we fulfill the low-energy theorem of deuteron Compton scattering and there is no significant dependence on the deuteron wave function used. Concerning the nucleon structure, we use Chiral Effective Field Theory with explicit \Delta(1232) degrees of freedom within the Small Scale Expansion up to leading-one-loop order. Agreement with available data is good at all energies. Our 2-parameter fit to all elastic γd\gamma d data leads to values for the static isoscalar dipole polarizabilities which are in excellent agreement with the isoscalar Baldin sum rule. Taking this value as additional input, we find \alpha_E^s= (11.3+-0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and \beta_M^s = (3.2-+0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and conclude by comparison to the proton numbers that neutron and proton polarizabilities are essentially the same.Comment: 47 pages LaTeX2e with 20 figures in 59 .eps files, using graphicx. Minor modifications; extended discussion of theoretical uncertainties of polarisabilities extraction. Version accepted for publication in EPJ

    Predictive powers of chiral perturbation theory in Compton scattering off protons

    Full text link
    We study low-energy nucleon Compton scattering in the framework of baryon chiral perturbation theory (Bχ\chiPT) with pion, nucleon, and Δ\Delta(1232) degrees of freedom, up to and including the next-to-next-to-leading order (NNLO). We include the effects of order p2p^2, p3p^3 and p4/Δp^4/\varDelta, with Δ300\varDelta\approx 300 MeV the Δ\Delta-resonance excitation energy. These are all "predictive" powers in the sense that no unknown low-energy constants enter until at least one order higher (i.e, p4p^4). Estimating the theoretical uncertainty on the basis of natural size for p4p^4 effects, we find that uncertainty of such a NNLO result is comparable to the uncertainty of the present experimental data for low-energy Compton scattering. We find an excellent agreement with the experimental cross section data up to at least the pion-production threshold. Nevertheless, for the proton's magnetic polarizability we obtain a value of (4.0±0.7)×104(4.0\pm 0.7)\times 10^{-4} fm3^3, in significant disagreement with the current PDG value. Unlike the previous χ\chiPT studies of Compton scattering, we perform the calculations in a manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB) expansion. The difference between the lowest order HBχ\chiPT and Bχ\chiPT results for polarizabilities is found to be appreciable. We discuss the chiral behavior of proton polarizabilities in both HBχ\chiPT and Bχ\chiPT with the hope to confront it with lattice QCD calculations in a near future. In studying some of the polarized observables, we identify the regime where their naive low-energy expansion begins to break down, thus addressing the forthcoming precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ

    Spin-dependent cross sections from the three-body photodisintegration of He 3 at incident energies of 12.8 and 14.7 MeV

    Get PDF
    The first measurement of the three-body photodisintegration of polarized 3He using a circularly polarized photon beam has been performed at incident energies of 12.8 and 14.7 MeV. This measurement was carried out at the high-intensity γ-ray source located at Triangle Universities Nuclear Laboratory. A high-pressure 3He target, polarized via spin exchange optical pumping with alkali metals, was used in the experiment. The spin-dependent double- and single-differential cross sections from 3He(γ,n)pp for laboratory angles varying from 30° to 165° are presented and compared with state-of-the-art three-body calculations. The data reveal the importance of including the Coulomb interaction between protons in the three-body calculations

    BOUT++: a framework for parallel plasma fluid simulations

    Full text link
    A new modular code called BOUT++ is presented, which simulates 3D fluid equations in curvilinear coordinates. Although aimed at simulating Edge Localised Modes (ELMs) in tokamak X-point geometry, the code is able to simulate a wide range of fluid models (magnetised and unmagnetised) involving an arbitrary number of scalar and vector fields, in a wide range of geometries. Time evolution is fully implicit, and 3rd-order WENO schemes are implemented. Benchmarks are presented for linear and non-linear problems (the Orszag-Tang vortex) showing good agreement. Performance of the code is tested by scaling with problem size and processor number, showing efficient scaling to thousands of processors. Linear initial-value simulations of ELMs using reduced ideal MHD are presented, and the results compared to the ELITE linear MHD eigenvalue code. The resulting mode-structures and growth-rate are found to be in good agreement (BOUT++ = 0.245, ELITE = 0.239). To our knowledge, this is the first time dissipationless, initial-value simulations of ELMs have been successfully demonstrated.Comment: Submitted to Computer Physics Communications. Revised to reduce page count. 18 pages, 16 figure

    Time Projection Chamber (TPC) detectors for nuclear astrophysics studies with gamma beams

    Get PDF
    Gamma-Beams at the HIS facility in the USA and anticipated at the ELI-NP facility, now constructed in Romania, present unique new opportunities to advance research in nuclear astrophysics; not the least of which is resolving open questions in oxygen formation during stellar helium burning via a precise measurement of the 12C() reaction. Time projection chamber (TPC) detectors operating with low pressure gas (as an active target) are ideally suited for such studies. We review the progress of the current research program and plans for the future at the HIS facility with the optical readout TPC (O-TPC) and the development of an electronic readout TPC for the ELI-NP facility (ELITPC)
    corecore