24 research outputs found

    On the growth of the Bergman kernel near an infinite-type point

    Full text link
    We study diagonal estimates for the Bergman kernels of certain model domains in C2\mathbb{C}^2 near boundary points that are of infinite type. To do so, we need a mild structural condition on the defining functions of interest that facilitates optimal upper and lower bounds. This is a mild condition; unlike earlier studies of this sort, we are able to make estimates for non-convex pseudoconvex domains as well. This condition quantifies, in some sense, how flat a domain is at an infinite-type boundary point. In this scheme of quantification, the model domains considered below range -- roughly speaking -- from being ``mildly infinite-type'' to very flat at the infinite-type points.Comment: Significant revisions made; simpler estimates; very mild strengthening of the hypotheses on Theorem 1.2 to get much stronger conclusions than in ver.1. To appear in Math. An

    On the Bohr inequality

    Full text link
    The Bohr inequality, first introduced by Harald Bohr in 1914, deals with finding the largest radius rr, 0<r<10<r<1, such that n=0anrn1\sum_{n=0}^\infty |a_n|r^n \leq 1 holds whenever n=0anzn1|\sum_{n=0}^\infty a_nz^n|\leq 1 in the unit disk D\mathbb{D} of the complex plane. The exact value of this largest radius, known as the \emph{Bohr radius}, has been established to be 1/3.1/3. This paper surveys recent advances and generalizations on the Bohr inequality. It discusses the Bohr radius for certain power series in D,\mathbb{D}, as well as for analytic functions from D\mathbb{D} into particular domains. These domains include the punctured unit disk, the exterior of the closed unit disk, and concave wedge-domains. The analogous Bohr radius is also studied for harmonic and starlike logharmonic mappings in D.\mathbb{D}. The Bohr phenomenon which is described in terms of the Euclidean distance is further investigated using the spherical chordal metric and the hyperbolic metric. The exposition concludes with a discussion on the nn-dimensional Bohr radius

    Bohr's strip for vector valued Dirichlet series

    No full text
    Bohr showed that the width of the strip (in the complex plane) on which a given Dirichlet series Sigma a(n)/n(s), s is an element of C, converges uniformly but not absolutely, is at most 1/2, and Bohnenblust-Hille that this bound in general is optimal. We prove that for a given infinite dimensional Banach space Y the width of Bohr's strip for a Dirichlet series with coefficients a(n) in Y is bounded by 1 - 1/Cot (Y), where Cot (Y) denotes the optimal cotype of Y. This estimate even turns out to be optimal, and hence leads to a new characterization of cotype in terms of vector valued Dirichlet series
    corecore