38 research outputs found

    Mechanical properties of Annona chalk to 3.8 GPa

    No full text

    High-pressure mechanical and sonic properties of a Devonian shale from West Virginia

    Get PDF
    Static mechanical properties and sonic velocities were determined on each of four members of the Devonian shale from Columbia Gas Transmission's well 20403, Huntington, West Virginia. They were: Pressure - volume data to 4.0 GPa; Compressive strength at confining pressures up to 300 MPa, both parallel and perpendicular to bedding. Extensile strength at 100 to 700 MPa confining pressure, both parallel and perpendicular to bedding. Loading and unloading path in uniaxial strain at 20 to 500 MPa confining pressure, both parallel and perpendicular to bedding. Tensile strength at ambient pressure, parallel and perpendicular to bedding. Shear and compressional wave velocities at confining pressures up to 1000 MPa parallel, at 45/sup 0/, and perpendicular to bedding. Results are presented and discussed. 32 refs., 10 figs., 10 tabs

    HIGH-PRESSURE MECHANICAL PROPERTIES OF MERLIN ALLUVIUM.

    No full text

    INELASTIC PROPERTIES OF SEVERAL HIGH PRESSURE CRYSTALLINE PHASES OF H2O : ICES II, III AND V

    No full text
    Des cylindres polycristallins de H2O ont été déformés à des températures entre 178 K et 257 K, et pressions atteignant 500 MPa, dans les domaines de stabilité des glaces II, III, et V. La glace II est la plus dure des trois phases, ayant une résistance mécanique dans les conditions expérimentales, équivalente à celle de la glace Ih. La résistance mécanique de la glace V est un peu moindre. Celle de la glace III est extrêmement faible, et pendant des durées géologiques ce matériau se comporte effectivement comme un liquide, limité au dessous par la glace V et au dessus par la glace II ou Ih. Les relations entres ces phases sont compliquées par la métastabilité de certaines d'entres elles, la plus importante étant l'existence de la glace III dans le domaine de la glace II, même après des périodes prolongées. Même pendant la déformation à des températures aussi basses que 211 K (plus de 30 K au dessous de la température théorique d'apparition de la glace III) la transformation de III à II ne peut pas être provoquée en laboratoire.We have performed deformation experiments on cylinders of polycrystalline H2O at temperatures from 178 to 257 K at pressures to 500 MPa in the stability fields of ices II, III, and V. Ice II is the strongest of the phases, having a strength under laboratory conditions roughly comparable to that of ice Ih. Ice V is somewhat weaker than ice II. Ice III is extremely weak and over geologic times must behave essentially as a liquid bounded below by ice V and above by ice II or Ih. Phase relationships are complicated by a number of phase metastabilities, the most important of which is the existence of ice III in the ice II field for extended periods of time. Even under deformation at temperatures as low as 211 K (over 30 K below the ice III field), the transformations from III to II can not be made to happen in the laboratory

    Mechanical properties of Blair dolomite

    No full text
    Pressure-volume, uniaxial stress loading to failure, uniaxial strain, and acoustic velocity determinations were made on Blair dolomite at confining pressures ranging to 3.5 GPa (Pa = Paschals where 10/sup 5/ Pa = 1 bar or 0.1 GPa = 1 kbar). The bulk modulus K, rapidly rises from an initial 10.4 GPa (at atmospheric pressure) to 102.0 GPa at 1 GPa pressure. At higher pressures, K remains essentially constant (110 GPa). The maximum volume change on loading is 3.9% at 3.5 GPa; the unloading closely follows the loading path. Comparison of uninxial stress tests in compression to 0.7 GPa and extension to 2.1 GPa confining pressure demonstrates that the characteristic shear stress at failure as well as the transition from brittle fracture to ductile flow is strongly dependent upon both the value of the intermediate principal stress sigma /sub 2/ and the rate of strain. The onset of dilatancy as determined in uniaxial compression occurs at about two-thirds of the failure stress. The uniaxial strain loading path is well below the failure envelope in compression. In uniaxial stress loading (compression), Young' s modulus (E) and shear modulus ( mu ) are demonstrated to be very sensitive to both confining pressure and to the level of shear stress. For example, at pressures of 0.1 MPa to 0.5 GPa, both E and mu first increase up to shear stresses of 0.05 to 0.15 GPa and then decrease at all higher stress values. These moduli are shown to be very sensitive indicators of the onset of dilatancy. Elastic moduli as derived from acoustic velocity measurements also increase with confining pressure (to 1 GPa), with the major change occurring below 0.1 GPa. All of the observations made at nonhydrostatic conditions are consistent with the closure of preexisting cracks at low pressures and low shear stresses followed by an increasing rate of crack growth as stress is increased, even at the higher corfining pressures. However, some cracks, which would normally close with hydrostatic pre ssure, remain open under uniaxial stress loading at similar mean pressures. (auth

    INELASTIC PROPERTIES OF ICE Ih AT LOW TEMPERATURES AND HIGH PRESSURES

    No full text
    Le but de notre programme de recherche est d'étudier le comportement rhéologique de glaces soumises aux mêmes conditions que celles existant à l'intérieur de satellites des planètes extérieures afin de connaître leurs lois de déformation. Pour cela, nous avons effectué 100 essais de compression à vitesse de déformation constante pour des pressions allant jusqu'à 500 MPa et pour des températures aussi basses que 77 K. Pour P > 30 MPa, la glace Ih se fracture par instabilité de cisaillement produisant des fautes dans la direction du maximum de contrainte de cisaillement et la contrainte de fissuration est indépendante de la pression. Ce comportement inhabituel peut-être associé à des transformations de phases localisées dans les zones de cisaillement. La résistance en régime stationnaire suit des lois rhéologiques thermiquement activées décrites par des lois de puissance, avec différents paramètres d'écoulement dépendant des gammes de températures étudiées. Les lois d'écoulement seront discutées en relation avec les divers mécanismes de déformation déduits des microstructures observées optiquement et en comparaison avec d'autres travaux.The aim of our research programme is to explore the rheological behavior of H2O ices under conditions appropriate to the interiors of the icy satellites of the outer planets in order to give insight into their deformation. To this end, we have performed over 100 constant-strain-rate compression tests at pressures to 500 MPa and temperatures as low as 77 K. At P > 30 MPa, ice Ih fails by a shear instability producing faults in the maximum shear stress orientation and failure strength typically is independent of pressure. This unusual faulting behavior is thought to be connected with phase transformations localized in the shear zones. The steady-state strength follows rheological laws of the thermally-activated power-law type, with different flow law parameters depending on the range of test temperatures. The flow laws will be discussed with reference to the operating deformation mechanisms as deduced from optical-scale microstructures and comparison with other work

    High-pressure mechanical properties of Kayenta sandstone

    No full text
    Pressure-volume, uniaxial strain loading, uniaxial stress loading to failure, and ultrasoric velocity detemninations have been performed on samples of Kayenta sandstone from the site of the Mixed Company event. Hydrostatic pressure of 3 GPa produces about 23% volume compression, with 9% permanent compaction remaining upon unloading. The pressure-volume data indicate that crush-up of porosity begins between 200 and 300 MPa. In uniaxial strain loading, the sandstone loads directly to the vicinity of the failure envelope, then parallels that envelope to the highest confining pressure (480 MPa). At strain rates of about 10/sup -4//s, the loading path in uniaxial strain up to 200 MPa is coincident in pressure-volume space with the shock-loading path (at a strain rate of about 10/sup 5//s) observed on samples from the same block. The permanent compaction, after unloading under conditions of uniaxial strain from 625 MPa mean pressure, is about 3.8%. Uniaxial stress loading indicates a brittle-ductile transition between 400 and 500 MPa mean pressure. Between 100 and 500 MPa mean pressure, the slope of the failure envelope is decreased consideably with respect to that below 100 MPa and between 500 and 900 MPa. This plateau, which is not present in the failure envelope for material subjected to a 700-MPa confining pressure before the uniaxial stress test, is interpreted as being due to pore crush-up during hydrostatic loading. As confining pressure is increased from 0.1 MPa to 1 GPa, the measured compressional velocity increases from 3.0 km/s to 5.0 km/s and the shear velocity increases from 1.5 km/s to 2.4 km/s. Small decreases in compressional velocity ( approximates 5%1 between 10 and 40 MPa are attributed to local brittle failure resulting from highly localized stress concentrations within the sample under hydrostatic loading. (auth
    corecore