57,473 research outputs found
A smart vision sensor for detecting risk factors of a toddler's fall in a home environment
This paper presents a smart vision sensor for detecting risk factors of a toddler's fall in an indoor home environment assisting parents' supervision to prevent fall injuries. We identified the risk factors by analyzing real fall injury stories and referring to a related organization's suggestions to prevent falls. In order to detect the risk factors using computer vision, two major image processing methods, clutter detection and toddler tracking, were studied with using only one commercial web-camera. For practical purposes, there is no need for a toddler to wear any sensors or markers. The algorithms for detection have been developed, implemented and tested
Vision-based toddler tracking at home
This paper presents a vision-based toddler tracking system for detecting risk factors of a toddler's fall within the home environment. The risk factors have environmental and behavioral aspects and the research in this paper focuses on the behavioral aspects. Apart from common image processing tasks such as background subtraction, the vision-based toddler tracking involves human classification, acquisition of motion and position information, and handling of regional merges and splits. The human classification is based on dynamic motion vectors of the human body. The center of mass of each contour is detected and connected with the closest center of mass in the next frame to obtain position, speed, and directional information. This tracking system is further enhanced by dealing with regional merges and splits due to multiple object occlusions. In order to identify the merges and splits, two directional detections of closest region centers are conducted between every two successive frames. Merges and splits of a single object due to errors in the background subtraction are also handled. The tracking algorithms have been developed, implemented and tested
A model for the interaction of high-energy particles in straight and bent crystals implemented in Geant4
A model for the simulation of orientational effects in straight and bent
periodic atomic structures is presented. The continuum potential approximation
has been adopted.The model allows the manipulation of particle trajectories by
means of straight and bent crystals and the scaling of the cross sections of
hadronic and electromagnetic processes for channeled particles. Based on such a
model, an extension of the Geant4 toolkit has been developed. The code has been
validated against data from channeling experiments carried out at CERN
The Geant4 Hadronic Verification Suite for the Cascade Energy Range
A Geant4 hadronic process verification suite has been designed to test and
optimize Geant4 hadronic models in the cascade energy range. It focuses on
quantities relevant to the LHC radiation environment and spallation source
targets. The general structure of the suite is presented, including the user
interface, stages of verification, management of experimental data, event
generation, and comparison of results to data. Verification results for the
newly released Binary cascade and Bertini cascade models are presented.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 5 pages, LaTeX, 3 eps figures. PSN
MOMT00
SWECS tower dynamics analysis methods and results
Several different tower dynamics analysis methods and computer codes were used to determine the natural frequencies and mode shapes of both guyed and freestanding wind turbine towers. These analysis methods are described and the results for two types of towers, a guyed tower and a freestanding tower, are shown. The advantages and disadvantages in the use of and the accuracy of each method are also described
- …