6,894 research outputs found
Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition
Temperature-dependent resistivity of graphene grown by chemical vapor
deposition (CVD) is investigated. We observe in low mobility CVD graphene
device a strong insulating behavior at low temperatures and a metallic behavior
at high temperatures manifesting a non-monotonic in the temperature dependent
resistivity.This feature is strongly affected by carrier density modulation. To
understand this anomalous temperature dependence, we introduce thermal
activation of charge carriers in electron-hole puddles induced by randomly
distributed charged impurities. Observed temperature evolution of resistivity
is then understood from the competition among thermal activation of charge
carriers, temperature-dependent screening and phonon scattering effects. Our
results imply that the transport property of transferred CVD-grown graphene is
strongly influenced by the details of the environmentComment: 7 pages, 3 figure
Estimating CDM Particle Trajectories in the Mildly Non-Linear Regime of Structure Formation. Implications for the Density Field in Real and Redshift Space
We obtain approximations for the CDM particle trajectories starting from
Lagrangian Perturbation Theory. These estimates for the CDM trajectories result
in approximations for the density in real and redshift space, as well as for
the momentum density that are better than what standard Eulerian and Lagrangian
perturbation theory give. For the real space density, we find that our proposed
approximation gives a good cross-correlation (>95%) with the non-linear density
down to scales almost twice smaller than the non-linear scale, and six times
smaller than the corresponding scale obtained using linear theory. This allows
for a speed-up of an order of magnitude or more in the scanning of the
cosmological parameter space with N-body simulations for the scales relevant
for the baryon acoustic oscillations. Possible future applications of our
method include baryon acoustic peak reconstruction, building mock galaxy
catalogs, momentum field reconstruction.Comment: 25 pages, 11 figures; reference adde
The Heisenberg antiferromagnet on an anisotropic triangular lattice: linear spin-wave theory
We consider the effect of quantum spin fluctuations on the ground state
properties of the Heisenberg antiferromagnet on an anisotropic triangular
lattice using linear spin-wave theory. This model should describe the magnetic
properties of the insulating phase of the kappa-(BEDT-TTF)_2 X family of
superconducting molecular crystals. The ground state energy, the staggered
magnetization, magnon excitation spectra and spin-wave velocities are computed
as a function of the ratio between the second and first neighbours, J2/J1. We
find that near J2/J1 = 0.5, i.e., in the region where the classical spin
configuration changes from a Neel ordered phase to a spiral phase, the
staggered magnetization vanishes, suggesting the possibility of a quantum
disordered state. In this region, the quantum correction to the magnetization
is large but finite. This is in contrast to the frustrated Heisenberg model on
a square lattice, for which the quantum correction diverges logarithmically at
the transition from the Neel to the collinear phase. For large J2/J1, the model
becomes a set of chains with frustrated interchain coupling. For J2 > 4 J1, the
quantum correction to the magnetization, within LSW, becomes comparable to the
classical magnetization, suggesting the possibility of a quantum disordered
state. We show that, in this regime, quantum fluctuations are much larger than
for a set of weakly coupled chains with non-frustated interchain coupling.Comment: 10 pages, RevTeX + epsf, 5 figures Replaced with published version.
Comparison to series expansions energies include
Symmetrized mean-field description of magnetic instabilities in k-(BEDT-TTF)_2Cu[N(CN)]_2 Y salts
We present a novel and convenient mean-field method, and apply it to study
the metallic/antiferromagnetic interface of k-(BEDT-TTF)_2Cu[N(CN)]_2 Y organic
superconductors (BEDT_TTF is bis-ethylen-dithio-tetrathiafulvalene, Y=Cl, Br).
The method, which fully exploits the crystal symmetry, allows one to obtain the
mean-field solution of the 2D Hubbard model for very large lattices, up to
6x10^5 sites, yielding a reliable description of the phase boundary in a wide
region of the parameter space. The metal/antiferromagnet transtion appears to
be second order, except for a narrow region of the parameter space, where the
transition is very sharp and possibly first order. The cohexistence of metallic
and antiferromagnetic properties is only observed for the transient state in
the case of smooth second order transitions. The relevance of the present
resaults to the complex experimental behavior of centrosymmetric k-phase
BEDT-TTF salts is discussed.Comment: 9 pages in PS format, 7 figures (included in PS), 1 tabl
Bandwidth-controlled Mott transition in I. Optical studies of localized charge excitations
Infrared reflection measurements of the half-filled two-dimensional organic
conductors -(BEDT-TTF)Cu[N(CN)]BrCl were
performed as a function of temperature ( K) and
Br-substitution (, 40%, 73%, 85%, and 90%) in order to study the
metal-insulator transition. We can distinguish absorption processes due to
itinerant and localized charge carriers. The broad mid-infrared absorption has
two contributions: transitions between the two Hubbard bands and intradimer
excitations from the charges localized on the (BEDT-TTF) dimer. Since the
latter couple to intramolecular vibrations of BEDT-TTF, the analysis of both
electronic and vibrational features provides a tool to disentangle these
contributions and to follow their temperature and electronic-correlations
dependence. Calculations based on the cluster model support our interpretation.Comment: 12 pages, 12 figure
Vehicular traffic flow at an intersection with the possibility of turning
We have developed a Nagel-Schreckenberg cellular automata model for
describing of vehicular traffic flow at a single intersection. A set of traffic
lights operating in fixed-time scheme controls the traffic flow. Open boundary
condition is applied to the streets each of which conduct a uni-directional
flow. Streets are single-lane and cars can turn upon reaching to the
intersection with prescribed probabilities. Extensive Monte Carlo simulations
are carried out to find the model flow characteristics. In particular, we
investigate the flows dependence on the signalisation parameters, turning
probabilities and input rates. It is shown that for each set of parameters,
there exist a plateau region inside which the total outflow from the
intersection remains almost constant. We also compute total waiting time of
vehicles per cycle behind red lights for various control parameters.Comment: 8 pages, 17 eps figures, Late
Proteome Profiling of Breast Tumors by Gel Electrophoresis and Nanoscale Electrospray Ionization Mass Spectrometry
We have conducted proteome-wide analysis of fresh surgery specimens derived from breast cancer patients, using an approach that integrates size-based intact protein fractionation, nanoscale liquid separation of peptides, electrospray ion trap mass spectrometry, and bioinformatics. Through this approach, we have acquired a large amount of peptide fragmentation spectra from size-resolved fractions of the proteomes of several breast tumors, tissue peripheral to the tumor, and samples from patients undergoing noncancer surgery. Label-free quantitation was used to generate protein abundance maps for each proteome and perform comparative analyses. The mass spectrometry data revealed distinct qualitative and quantitative patterns distinguishing the tumors from healthy tissue as well as differences between metastatic and non-metastatic human breast cancers including many established and potential novel candidate protein biomarkers. Selected proteins were evaluated by Western blotting using tumors grouped according to histological grade, size, and receptor expression but differing in nodal status. Immunohistochemical analysis of a wide panel of breast tumors was conducted to assess expression in different types of breast cancers and the cellular distribution of the candidate proteins. These experiments provided further insights and an independent validation of the data obtained by mass spectrometry and revealed the potential of this approach for establishing multimodal markers for early metastasis, therapy outcomes, prognosis, and diagnosis in the future. © 2008 American Chemical Society
- …