651 research outputs found

    Thermodynamic properties of quadrupolar states in the frustrated pyrochlore magnet Tb2_2Ti2_2O7_7

    Get PDF
    The low-temperature thermodynamic properties of the frustrated pyrochlore Tb2+x_{2+x}Ti2x_{2-x}O7+y_{7+y} have been studied using the single crystal of x=0.005x=0.005 sitting in a long range ordered phase in the xx-TT phase diagram. We observed that the specific heat exhibits a minimum around 2 K and slightly increases on cooling, similar to a Schottky-like anomaly for canonical spin ices. A clear specific-heat peak observed at Tc=0.53T_{\rm c} = 0.53 K is ascribable to the phase transition to a quadrupolar state, which contributes to a relatively large change in entropy, S2.7S \simeq 2.7 J K1^{-1}mol1^{-1}. However, it is still smaller than Rln2R\ln2 for the ground state doublet of the Tb ions. The entropy release persists to higher temperatures, suggesting strong fluctuations associated with spin ice correlations above TcT_{\rm c}. We discuss the field dependence of the entropy change for H[111]H||[111] and H[001]H||[001].Comment: 6 pages, 2 figure

    Quadrupole order in the frustrated pyrochlore magnet Tb2Ti2O7

    Get PDF
    TMU International Symposium on "New Quantum Phases Emerging from Novel Crystal Structure" 24–25 September 2015, Tokyo, Japan.We have studied the hidden long-range order (LRO) of the frustrated pyrochlore magnet Tb2Ti2O7 by means of specific-heat experiments and Monte-Carlo (MC) simulations, which has been discussed as the LRO of quadrupole moments inherent to the non-Kramers ion of Tb3+. We have found that the sharp specific-heat peak is collapsed into a broad hump by magnetic fields above 0.3 T for H//[001]. This result, qualitatively reproduced by MC simulations, suggests that a field-induced magnetic state overcomes the quadrupolar LRO state, as a similar case of a classical spin ice. The present results support the interpretation that Tb2+xTi2-xO7+y is a unique material in the boundary between the quadrupolar (x >= x(c) = -0.0025) and spin-liquid (x <= x(c)) states, where the magnetic field along the [001] axis is a tuning parameter which induces the magnetic ordered state

    Critical behavior of the metallic triangular-lattice Heisenberg antiferromagnet PdCrO2

    Full text link
    We report physical properties of the conductive magnet PdCrO2 consisting of a layered structure with a triangular lattice of Cr3+ ions (S=3/2). We confirmed an antiferromagnetic transition at TN=37.5K by means of specific heat, electrical resistivity, magnetic susceptibility, and neutron scattering measurements. The critical behavior in the specific heat persists in an unusually wide temperature range above TN. This fact implies that spin correlations develop even at much higher temperature than TN. The observed sub-linear temperature dependence of the resistivity above TN is also attributed to the short-range correlations among the frustrated spins. While the critical exponent for the magnetization agrees reasonably with the prediction of the relevant model, that for the specific heat evaluated in the wide temperature range differs substantially from the prediction.Comment: 7 pages, 6 figure

    Magnon Dispersion in the Field-Induced Magnetically Ordered Phase of TlCuCl3

    Full text link
    The magnetic properties of the interacting dimer system TlCuCl3 are investigated within a bond-operator formulation. The observed field-induced staggered magnetic order perpendicular to the field is described as a Bose condensation of magnons which are linear combinations of dimer singlet and triplet modes. This technique accounts for the magnetization curve and for the field dependence of the magnon dispersion curves observed by high-field neutron scattering measurements.Comment: 4 pages, 4 figures, REVTeX

    Observation of Field-Induced Transverse N\'{e}el Ordering in the Spin Gap System TlCuCl3_3

    Full text link
    Neutron elastic scattering experiments have been performed on the spin gap system TlCuCl3_3 in magnetic fields parallel to the bb-axis. The magnetic Bragg peaks which indicate the field-induced N\'{e}el ordering were observed for magnetic field higher than the gap field Hg5.5H_{\rm g}\approx 5.5 T at Q=(h,0,l)Q=(h, 0, l) with odd ll in the aca^*-c^* plane. The spin structure in the ordered phase was determined. The temperature and field dependence of the Bragg peak intensities and the phase boundary obtained were discussed in connection with a recent theory which describes the field-induced N\'{e}el ordering as a Bose-Einstein condensation of magnons.Comment: 4 pages, 5 eps figures, jpsj styl
    corecore