10,534 research outputs found

    Correlations within the Non-Equilibrium Green's Function Method

    Full text link
    Non-equilibrium Green's Function (NGF) method is a powerful tool for studying the evolution of quantum many-body systems. Different types of correlations can be systematically incorporated within the formalism. The time evolution of the single-particle Green's functions is described in terms of the Kadanoff-Baym equations. The current work initially focuses on introducing the correlations within infinite nuclear matter in one dimension and then in a finite system in the NGF approach. Starting from the harmonic oscillator Hamiltonian, by switching on adiabatically the mean-field and correlations simultaneously, a correlated state with ground-state characteristics is arrived at within the NGF method. Furthermore the use of cooling to for improving the adiabatic switching is explored.Comment: Contribution to Proc. 5th Conference on Nuclei and Mesoscopic Physics, E Lansing, 6-10 March 2017; 9 pages, 8 figure

    Density and isospin asymmetry dependence of high-momentum components

    Get PDF
    We study the one-body momentum distribution at different densities in nuclear matter, with special emphasis on its components at high momentum. Explicit calculations for finite neutron-proton asymmetry, based on the ladder self-consistent Green's function approach, allow us to access the isospin dependence of momentum distributions and elucidate their role in neutron-rich systems. Comparisons with the deuteron momentum distribution indicate that a substantial proportion of high-momentum components are dominated by tensor correlations. We identify the density dependence of these tensor correlations in the momentum distributions. Further, we find that high-momentum components are determined by the density of each sub-species and we provide a new isospin asymmetry scaling of these components. We use different realistic nucleon-nucleon interactions to quantify the model dependence of our results.Comment: 14 pages, 7 figures, 1 table. Accepted version in Phys. Rev.

    Pairing and short-range correlations in nuclear systems

    Get PDF
    The structure and density dependence of the pairing gap in infinite matter is relevant for astrophysical phenomena and provides a starting point for the discussion of pairing properties in nuclear structure. Short-range correlations can significantly deplete the available single-particle strength around the Fermi surface and thus provide a reduction mechanism of the pairing gap. Here, we study this effect in the singlet and triplet channels of both neutron matter and symmetric nuclear matter. Our calculations use phase-shift equivalent interactions and chiral two-body and three-body interactions as a starting point. We find an unambiguous reduction of the gap in all channels with very small dependence on the NN force in the singlet neutron matter and the triplet nuclear matter channel. In the latter channel, short range correlations alone provide a 50% reduction of the pairing gap.Comment: Final version, as published in journal after refereein

    The Voltage Sensor of Excitation-Contraction Coupling in Skeletal Muscle. Ion Dependence and Selectivity

    Get PDF
    Manifestations of excitation-contraction (EC) coupling of skeletal muscle were studied in the presence of metal ions of the alkaline and alkaline-earth groups in the extracellular medium. Single cut fibers of frog skeletal muscle were voltage clamped in a double Vaseline gap apparatus, and intramembrane charge movement and myoplasmic Ca2+ transients were simultaneously measured. In metal-free extracellular media both charge movement of the charge 1 type and Ca transients were suppressed. Under metal-free conditions the nonlinear charge distribution was the same in depolarized (holding potential of 0 mV) and normally polarized fibers (holding potentials between -80 and -90 mV). The manifestations of EC coupling recovered when ions of groups Ia and IIa of the periodic table were included in the extracellular solution; the extent of recovery depended on the ion species. These results are consistent with the idea that the voltage sensor of EC coupling has a binding site for metal cations--the priming site--that is essential for function. A state model of the voltage sensor in which metal ligands bind preferentially to the priming site when the sensor is in noninactivated states accounts for the results. This theory was used to derive the relative affinities of the various ions for the priming site from the magnitude of the EC coupling response. The selectivity sequence thus constructed is: Ca greater than Sr greater than Mg greater than Ba for group IIa cations and Li greater than Na greater than K greater than Rb greater than Cs for group Ia. Ca2+, the most effective of all ions tested, was 1,500-fold more effective than Na+. This selectivity sequence is qualitatively and quantitatively similar to that of the intrapore binding sites of the L-type cardiac Ca channel. This provides further evidence of molecular similarity between the voltage sensor and Ca channels

    Life insurance and household consumption.

    Get PDF
    In this paper, we use data of life insurance holdings by age, sex, and marital status to infer how individuals value consumption in different demographic stages. Essentially, we use revealed preference to estimate equivalence scales and altruism simultaneously in the context of a fully specified model with agents facing U.S. demographic features and with access to savings markets and life insurance markets. Our findings indicate that individuals are very caring for their dependents, that there are large economies of scale in consumption, that children are costly but wives with children produce a lot of goods in the home and that while females seem to have some form of habits created by marriage, men do not. These findings contrast sharply with the standard notions of equivalence scales.Insurance

    An International Dynamic Term Structure Model with Economic Restrictions and Unspanned Risks

    Get PDF
    We construct a multi-country affine term structure model that contains unspanned macroeconomic and foreign exchange risks. The canonical version of the model is derived and is shown to be easy to estimate. We show that it is important to impose restrictions (including global asset pricing, carry trade fundamentals and maximal Sharpe ratios) on the prices of risk to obtain plausible decompositions of forward curves. The forecasts of interest rates and exchange rates from the restricted model match those from international survey data. Unspanned macroeconomic variables are important drivers of international term and foreign exchange risk premia as well as expected exchange rate changes.Asset Pricing; Exchange rates; Interest rates

    Slow energy relaxation of macromolecules and nano-clusters in solution

    Full text link
    Many systems in the realm of nanophysics from both the living and inorganic world display slow relaxation kinetics of energy fluctuations. In this paper we propose a general explanation for such phenomenon, based on the effects of interactions with the solvent. Within a simple harmonic model of the system fluctuations, we demonstrate that the inhomogeneity of coupling to the solvent of the bulk and surface atoms suffices to generate a complex spectrum of decay rates. We show for Myoglobin and for a metal nano-cluster that the result is a complex, non-exponential relaxation dynamics.Comment: 5 pages, 3 figure
    • …
    corecore