2,270 research outputs found

    Large spin-orbit splitting and weakly-anisotropic superconductivity revealed with single-crystalline noncentrosymmetric CaIrSi3

    Full text link
    We report normal and superconducting properties of the Rashba-type noncentrosymmetric com- pound CaIrSi3, using single crystalline samples with nearly 100% superconducting volume fraction. The electronic density of states revealed by the hard x-ray photoemission spectroscopy can be well explained by the relativistic first-principle band calculation. This indicates that strong spin-orbit interaction indeed affects the electronic states of this compound. The obtained H - T phase diagram exhibits only approximately 10% anisotropy, indicating that the superconducting properties are almost three dimensional. Nevertheless, strongly anisotropic vortex pinning is observed.Comment: 8 pages, 6 figures, 1 table, accepted for publication in Phys. Rev.

    Crystallographic and superconducting properties of the fully-gapped noncentrosymmetric 5d-electron superconductors CaMSi3 (M=Ir, Pt)

    Get PDF
    We report crystallographic, specific heat, transport, and magnetic properties of the recently discovered noncentrosymmetric 5d-electron superconductors CaIrSi3 (Tc = 3.6 K) and CaPtSi3 (Tc = 2.3 K). The specific heat suggests that these superconductors are fully gapped. The upper critical fields are less than 1 T, consistent with limitation by conventional orbital depairing. High, non-Pauli-limited {\mu}0 Hc2 values, often taken as a key signature of novel noncentrosymmetric physics, are not observed in these materials because the high carrier masses required to suppress orbital depairing and reveal the violated Pauli limit are not present.Comment: 8 pages, 8 figure
    corecore