1,566 research outputs found
Dynamical fluctuations in mode locking experiments on vortices moving through mesoscopic channels
We have studied the flow properties of vortices driven through easy flow
mesoscopic channels by means of the mode locking (ML) technique. We observe a
ML jump with large voltage broadening in the real part of the rf-impedance.
Upon approaching the pure dc flow by reducing the rf amplitude, the ML jump is
smeared out via a divergence of the voltage width. This indicates a large
spread in internal frequencies and lack of temporal coherence in the dc-driven
state.Comment: 2 pages, 2 figures, contribution to M2S-HTSC 2003, Ri
Dynamic melting of confined vortex matter
We study {\em dynamic} melting of confined vortex matter moving in
disordered, mesoscopic channels by mode-locking experiments. The dynamic
melting transition, characterized by a collapse of the mode-locking effect,
strongly depends on the frequency, i.e. on the average velocity of the
vortices. The associated dynamic ordering velocity diverges upon approaching
the equilibrium melting line as . The
data provide the first direct evidence for velocity dependent melting and show
that the phenomenon also takes place in a system under disordered confinement.
\pacs{74.25.Qt,83.50.Ha,64.70.Dv,64.60.Ht}Comment: Some small changes have been made. 4 pages, 4 figures included.
Accepted for publication in Phys. Rev. Let
Functionalization of different polymers with sulfonic groups as a way to coat them with a biomimetic apatite layer
Covalent coupling of sulfonic group (âSO3H)
was attempted on different polymers to evaluate efficacy of
this functional group in inducing nucleation of apatite in
body environment, and thereupon to design a simple biomimetic
process for preparing bonelike apatite-polymer
composites. Substrates of polyethylene terephthalate
(PET), polycaprolactam (Nylon 6), high molecular weight
polyethylene (HMWPE) and ethylene-vinyl alcohol copolymer
(EVOH) were subjected to sulfonation by being
soaked in sulfuric acid (H2SO4) or chlorosulfonic acid
(ClSO3H) with different concentrations. In order to incorporate
calcium ions, the sulfonated substrates were soaked
in saturated solution of calcium hydroxide (Ca(OH)2). The
treated substrates were soaked in a simulated body fluid
(SBF). Fourier transformed infrared spectroscopy, thin-film
X-ray diffraction, and scanning electron microscopy
showed that the sulfonation and subsequent Ca(OH)2
treatments allowed formation of âSO3H groups binding
Ca2+ ions on the surface of HMWPE and EVOH, but not on
PET and Nylon 6. The HMWPE and EVOH could thus
form bonelike apatite layer on their surfaces in SBF within
7 d. These results indicate that the âSO3H groups are
effective for inducing apatite nucleation, and thereby that
surface sulfonation of polymers are effective pre-treatment
method for preparing biomimetic apatite on their surfaces
Formation of terrestrial planets in close binary systems: the case of Alpha Centauri A
At present the possible existence of planets around the stars of a close
binary system is still matter of debate. Can planetary bodies form in spite of
the strong gravitational perturbations of the companion star? We study in this
paper via numerical simulation the last stage of planetary formation, from
embryos to terrestrial planets in the Alpha Cen system, the prototype of close
binary systems. We find that Earth class planets can grow around Alpha Cen A on
a time-scale of 50 Myr. In some of our numerical models the planets form
directly in the habitable zone of the star in low eccentric orbits. In one
simulation two of the final planets are in a 2:1 mean motion resonance that,
however, becomes unstable after 200 Myr. During the formation process some
planetary embryos fall into the stars possibly altering their metallicity.Comment: accepted for pubblication in A&A, 13 pages, 9 figure
Dynamic ordering of driven vortex matter in the peak effect regime of amorphous MoGe films and 2H-NbSe2 crystals
Dynamic ordering of driven vortex matter has been investigated in the peak
effect regime of both amorphous MoGe films and 2H-NbSe2 crystals by mode
locking (ML) and dc transport measurements. ML features allow us to trace how
the shear rigidity of driven vortices evolves with the average velocity.
Determining the onset of ML resonance in different magnetic fields and/or
temperatures, we find that the dynamic ordering frequency (velocity) exhibits a
striking divergence in the higher part of the peak effect regime.
Interestingly, this phenomenon is accompanied by a pronounced peak of dynamic
critical current. Mapping out field-temperature phase diagrams, we find that
divergent points follow well the thermodynamic melting curve of the ideal
vortex lattice over wide field and/or temperature ranges. These findings
provide a link between the dynamic and static melting phenomena which can be
distinguished from the disorder induced peak effect.Comment: 9 pages, 6 figure
The formation of Uranus and Neptune among Jupiter and Saturn
The outer giant planets, Uranus and Neptune, pose a challenge to theories of
planet formation. They exist in a region of the Solar System where long
dynamical timescales and a low primordial density of material would have
conspired to make the formation of such large bodies ( 15 and 17 times as
massive as the Earth, respectively) very difficult. Previously, we proposed a
model which addresses this problem: Instead of forming in the trans-Saturnian
region, Uranus and Neptune underwent most of their growth among proto-Jupiter
and -Saturn, were scattered outward when Jupiter acquired its massive gas
envelope, and subsequently evolved toward their present orbits. We present the
results of additional numerical simulations, which further demonstrate that the
model readily produces analogues to our Solar System for a wide range of
initial conditions. We also find that this mechanism may partly account for the
high orbital inclinations observed in the Kuiper belt.Comment: Submitted to AJ; 38 pages, 16 figure
The effect of gas drag on the growth of protoplanets -- Analytical expressions for the accretion of small bodies in laminar disks
Planetary bodies form by accretion of smaller bodies. It has been suggested
that a very efficient way to grow protoplanets is by accreting particles of
size <<km (e.g., chondrules, boulders, or fragments of larger bodies) as they
can be kept dynamically cold. We investigate the effects of gas drag on the
impact radii and the accretion rates of these particles. As simplifying
assumptions we restrict our analysis to 2D settings, a gas drag law linear in
velocity, and a laminar disk characterized by a smooth (global) pressure
gradient that causes particles to drift in radially. These approximations,
however, enable us to cover an arbitrary large parameter space. The framework
of the circularly restricted three body problem is used to numerically
integrate particle trajectories and to derive their impact parameters. Three
accretion modes can be distinguished: hyperbolic encounters, where the 2-body
gravitational focusing enhances the impact parameter; three-body encounters,
where gas drag enhances the capture probability; and settling encounters, where
particles settle towards the protoplanet. An analysis of the observed behavior
is presented; and we provide a recipe to analytically calculate the impact
radius, which confirms the numerical findings. We apply our results to the
sweepup of fragments by a protoplanet at a distance of 5 AU. Accretion of
debris on small protoplanets (<50 km) is found to be slow, because the
fragments are distributed over a rather thick layer. However, the newly found
settling mechanism, which is characterized by much larger impact radii, becomes
relevant for protoplanets of ~10^3 km in size and provides a much faster
channel for growth.Comment: accepted for publication in Astronomy & Astrophysic
Surface potential change in bioactive polymer during the process of biomimetic apatite formation in a simulated body fluid
A bioactive polyethylene substrate can be produced by incorporation of sulfonic functional groups (-SO3H) on its surface and by soaking in a calcium hydroxide saturated solution. Variation of the surface potential of the polyethylene modified with -SO3H groups with soaking in a simulated body fluid (SBF) was investigated using a laser electrophoresis zeta-potential analyzer. To complement the study using laser electrophoresis, the surface was examined by X-ray photoelectron spectroscopy (XPS), thin film X-ray diffraction (TF-XRD), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive electron X-ray spectroscopy (EDS). Comparing the zeta potential of sulfonated and Ca(OH)2-treated polyethylene with its surface structure at each interval of these soaking times in SBF, it is apparent that the polymer has a negative surface potential when it forms -SO3H groups on its surface. The surface potential of the polymer increases when it forms amorphous calcium sulfate. The potential decreases when it forms amorphous calcium phosphate, revealing a constant negative value after forming apatite. The XPS and zeta potential analysis demonstrated that the surface potential of the polyethylene was highly negatively charged after soaking in SBF for 0.5 h, increased for higher soaking times (up to 48 h), and then decreased. The negative charge of the polymer at a soaking time of 0.5 h is attributed to the presence of -SO3H groups on the surface. The initial increase in the surface potential was attributed to the incorporation of positively charged calcium ions to form calcium sulfate, and then the subsequent decrease was assigned to the incorporation of negatively charged phosphate ions to form amorphous calcium phosphate, which eventually transformed into apatite. These results indicate that the formation of apatite on bioactive polyethylene in SBF is due to electrostatic interaction of the polymer surface and ions in the fluid
- âŠ