376 research outputs found

    Early childhood constraint therapy for sensory/motor impairment in cerebral palsy: a randomised clinical trial protocol.

    Get PDF
    INTRODUCTION: Cerebral palsy (CP) is the most common physical disability in childhood. It is a disorder resulting from sensory and motor impairments due to perinatal brain injury, with lifetime consequences that range from poor adaptive and social function to communication and emotional disturbances. Infants with CP have a fundamental disadvantage in recovering motor function: they do not receive accurate sensory feedback from their movements, leading to developmental disregard. Constraint-induced movement therapy (CIMT) is one of the few effective neurorehabilitative strategies shown to improve upper extremity motor function in adults and older children with CP, potentially overcoming developmental disregard. METHODS AND ANALYSIS: This study is a randomised controlled trial of children 12-24 months corrected age studying the effectiveness of CIMT combined with motor and sensory-motor interventions. The study population will comprise 72 children with CP and 144 typically developing children for a total of N=216 children. All children with CP, regardless of group allocation will continue with their standard of care occupational and physical therapy throughout the study. The research material collected will be in the form of data from high-density array event-related potential scan, standardised assessment scores and motion analysis scores. ETHICS AND DISSEMINATION: The study protocol was approved by the Institutional Review Board. The findings of the trial will be disseminated through peer-reviewed journals and scientific conferences. TRIAL REGISTRATION NUMBER: NCT02567630

    Carbon-Carbon bond forming reactions of organotransition metal enolate complexes

    Get PDF
    Abstract -Metal enolates play an important role in stereoselective organic synthesis. Their chemistry is affected profoundly by the metal counterion associated with the enolate fragment. In order to expand the potential of replacing main group with transition metal moieties in such species, methods have been developed for the synthesis of a number of stable, characterizable "late" transition metal ql-(C)-enolate complexes having the general structure LM-CH2COR (M = Mo, W, Re). The chemistry of these materials (e.g., functional transformations of the organic carbonyl group, transfer of the enolate moietry to organic substrates such as aldehydes and alkynes) has been investigated. The scope and mechanisms of the enolate reactions will be discussed in detail. The reaction of organic enolates with carbon electrophiles (e.g., alkyl halides, organic carbonyl compounds) gives rise to compounds containing new carbon-carbon bonds; reaction with heteroatom electrophiles results in the formation of oxidized products? There has been much interest recently in developing methods for carrying out these transformations with high stereoselectivity.3 Historically, most enolate research has focused on salts involving alkali metal anions. More recently, research efforts have been extended to enolates associated with organic cations, main group metals, and transition metals. In the transition metal area, enolates involving the so-called "early" metals (to the left of chromium, molybdenum and tungsten) have seen extensive investigationi4 in general these complexes have 0-bonded structures A in Scheme 1. This paper describes the synthesis and chemistry of middle-and late transition metal enolates, which have seen less investigation. It was our hope that such species would be more likely to have Cbound structure B, and also to react with both electrophilic and non-electrophilic species (e.g., by insertion rather than nucleophile-electrophile mechanisms). SYNTHESIS, CHARACTERIZATION AND FUNCTIONAL GROUP TRANSFORMATIONS OF TUNGSTEN AND MOLYBDENUM ENOLATES The well-known nucleophilic anionic metal salts5 Na[(qS-C5R5)(C0)3M] (M = Mo, W, R=H, Me), on treatment with a-chloroketones and esters, provide good yields of enolates 1 -8, as shown in Scheme 2. These are thermally stable complexes that may be isolated by conventional chromatographic and recrystallization methods; they have been characterized fully by elemental analysis and spectroscopic techniques. Preparation of these materials on a multi-gram scale in a one-pot procedure is possible by treatment of W(CO)6 or Mo(C0)6 with NaCp, followed by addition of the a-chlorocarbonyl compound to the resulting metal anion solution. The stability of the tungsten-carbon bond in tungsten ester enolates, fiist suggested several years ago by the work of Green and his coworkers6, has allowed us to carry out a wide range of transformations on the organic carbonyl group. Thus the reactions shown in Scheme 3 proceed in good yield, and lead to stable tungsten enolates containing ester, amide and even carboxylic acid and acid chloride functionality

    Pandemic (H1N1) 2009 virus outbreak in a school in London, April-May 2009: an observational study

    Get PDF
    On 29 April 2009, an imported case of pandemic (H1N1) 2009 virus infection was detected in a London school. As further cases, pupils and staff members were identified, school closure and mass prophylaxis were implemented. An observational descriptive study was conducted to provide an insight into the clinical presentation and transmission dynamics in this setting. Between 15 April and 15 May 2009, 91 symptomatic cases were identified: 33 were confirmed positive for pandemic (H1N1) 2009 virus infection; 57 were tested negative; in one the results were unavailable. Transmission occurred first within the school, and subsequently outside. Attack rates were 2% in pupils (15% in the 11–12 years age group) and 17% in household contacts. The predominant symptoms were fever (97%), respiratory symptoms (91%), and sore throat (79%). Limited spread in the school may have been due to a combination of school closure and mass prophylaxis. However, transmission continued through household contacts to other schools

    Adaptation of the difficulty level in an infant-robot movement contingency study

    Get PDF
    19th International Workshop of Physical Agents (WAF). Madrid (22-23 Noviembre 2018)ABSTRACT: This paper presents a personalized contingency feedback adaptation system that aims to encourage infants aged 6 to 8 months to gradually increase the peak acceleration of their leg movements. The ultimate challenge is to determine if a socially assistive humanoid robot can guide infant learning using contingent rewards, where the reward threshold is personalized for each infant using a reinforcement learning algorithm. The model learned from the data captured by wearable inertial sensors measuring infant leg movement accelerations in an earlier study. Each infant generated a unique model that determined the behavior of the robot. The presented results were obtained from the distributions of the participants' acceleration peaks and demonstrate that the resulting model is sensitive to the degree of differentiation among the participants; each participant (infant) should have his/her own learned policy.This work was supported by NSF award 1706964 (PI: Smith, Co-PI: Matarić). In addition, this work was developed during an international mobility program at the University of Southern California being also partially funded by the European Union ECHORD++ project (FP7-ICT-601116), the LifeBots project (TIN2015-65686-C5) and THERAPIST project (TIN2012-38079)

    Henry Rapoport

    No full text

    Introduction to organic chemistry

    No full text

    Total Syntheses of (±)-Preussomerins G and I

    No full text
    corecore