2,150,540 research outputs found
Ground State Asymptotics of a Dilute, Rotating Gas
We investigate the ground state properties of a gas of interacting particles
confined in an external potential in three dimensions and subject to rotation
around an axis of symmetry. We consider the so-called Gross-Pitaevskii (GP)
limit of a dilute gas. Analyzing both the absolute and the bosonic ground state
of the system we show, in particular, their different behavior for a certain
range of parameters. This parameter range is determined by the question whether
the rotational symmetry in the minimizer of the GP functional is broken or not.
For the absolute ground state, we prove that in the GP limit a modified GP
functional depending on density matrices correctly describes the energy and
reduced density matrices, independent of symmetry breaking. For the bosonic
ground state this holds true if and only if the symmetry is unbroken.Comment: LaTeX2e, 37 page
Multilayer screen gives cathode ray tube high contrast
Fabrication method for cathode ray tubes uses low-cost siloxane resin formulations. The resins contain sufficient methyl or phenyl groups for solubility in organic solvents. After vaporization and baking, the polymerized material is stable under vacuum and under temperatures required for tube fabrication
Theory of Type-II Superconductors with Finite London Penetration Depth
Previous continuum theory of type-II superconductors of various shapes with
and without vortex pinning in an applied magnetic field and with transport
current, is generalized to account for a finite London penetration depth
lambda. This extension is particularly important at low inductions B, where the
transition to the Meissner state is now described correctly, and for films with
thickness comparable to or smaller than lambda. The finite width of the surface
layer with screening currents and the correct dc and ac responses in various
geometries follow naturally from an equation of motion for the current density
in which the integral kernel now accounts for finite lambda. New geometries
considered here are thick and thin strips with applied current, and `washers',
i.e. thin film squares with a slot and central hole as used for SQUIDs.Comment: 14 pages, including 15 high-resolution figure
Proof of Bose-Einstein Condensation for Dilute Trapped Gases
The ground state of bosonic atoms in a trap has been shown experimentally to
display Bose-Einstein condensation (BEC). We prove this fact theoretically for
bosons with two-body repulsive interaction potentials in the dilute limit,
starting from the basic Schroedinger equation; the condensation is 100% into
the state that minimizes the Gross-Pitaevskii energy functional. This is the
first rigorous proof of BEC in a physically realistic, continuum model.Comment: Revised version with some simplifications and clarifications. To
appear in Phys. Rev. Let
On the maximal ionization of atoms in strong magnetic fields
We give upper bounds for the number of spin 1/2 particles that can be bound
to a nucleus of charge Z in the presence of a magnetic field B, including the
spin-field coupling. We use Lieb's strategy, which is known to yield N_c<2Z+1
for magnetic fields that go to zero at infinity, ignoring the spin-field
interaction. For particles with fermionic statistics in a homogeneous magnetic
field our upper bound has an additional term of order
.Comment: LaTeX2e, 8 page
Critical State in Thin Anisotropic Superconductors of Arbitrary Shape
A thin flat superconductor of arbitrary shape and with arbitrary in-plane and
out-of-plane anisotropy of flux-line pinning is considered, in an external
magnetic field normal to its plane.
It is shown that the general three-dimensional critical state problem for
this superconductor reduces to the two-dimensional problem of an infinitely
thin sample of the same shape but with a modified induction dependence of the
critical sheet current. The methods of solving the latter problem are well
known. This finding thus enables one to study the critical states in realistic
samples of high-Tc superconductors with various types of anisotropic flux-line
pinning. As examples, we investigate the critical states of long strips and
rectangular platelets of high-Tc superconductors with pinning either by the
ab-planes or by extended defects aligned with the c-axis.Comment: 13 pages including 13 figure files in the tex
Process of treating cellulosic membrane and alkaline with membrane separator
The improvement of water-soluble cellulose ether membranes for use as separators in concentrated alkaline battery cells is discussed. The process of contacting membranes with an aqueous alkali solution of concentration less than that of the alkali solution to be used in the battery but above that at which the membrane is soluble is described
- …