36 research outputs found

    Surgical reconstruction of the left main coronary artery with patch-angioplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional coronary artery bypass grafting (CABG) has been established as the treatment of choice for left main coronary artery (LMCA) stenosis However, the conventional grafting provides a retrograde perfusion to extensive myocardial area and leads prospectively to competitive flow of the non-occluded coronaries thus consuming the grafts. Surgical reconstruction of the LMCA with patch-angioplasty is an alternative method that eliminates these drawbacks.</p> <p>Methods</p> <p>Between February 1997 and July 2007, 37 patients with isolated LMCA stenosis were referred for surgical ostial reconstruction. In 27 patients (73%) surgical angioplasties have been performed. All patients were followed up clinically and with transesophageal echocardiography (TEE) and coronary angiography when required.</p> <p>Results</p> <p>In 10 patients (27%) a LMCA stenosis could not be confirmed. There were no early mortality or perioperative myocardial infarctions. The postoperative course was uneventful in all patients. In 25 patients, TEE demonstrated a wide open main stem flow pattern one to six months after reconstruction of the left main coronary artery with one patch mild aneurysmal dilated.</p> <p>Conclusions</p> <p>The surgical reconstruction with patch-angioplasty is a safe and effective method for the treatment of proximal and middle LMCA stenosis. Almost one third of the study group had no really LMCA stenosis: antegrade flow pattern remained sustained and the arterial grafts have been spared. In the cases of unclear or suspected LMCA stenosis, cardio-CT can be performed to unmask catheter-induced coronary spasm as the underlying reason for isolated LMCA stenosis.</p

    The Nature of the Dietary Protein Impacts the Tissue-to-Diet 15N Discrimination Factors in Laboratory Rats

    Get PDF
    Due to the existence of isotope effects on some metabolic pathways of amino acid and protein metabolism, animal tissues are 15N-enriched relative to their dietary nitrogen sources and this 15N enrichment varies among different tissues and metabolic pools. The magnitude of the tissue-to-diet discrimination (Δ15N) has also been shown to depend on dietary factors. Since dietary protein sources affect amino acid and protein metabolism, we hypothesized that they would impact this discrimination factor, with selective effects at the tissue level. To test this hypothesis, we investigated in rats the influence of a milk or soy protein-based diet on Δ15N in various nitrogen fractions (urea, protein and non-protein fractions) of blood and tissues, focusing on visceral tissues. Regardless of the diet, the different protein fractions of blood and tissues were generally 15N-enriched relative to their non-protein fraction and to the diet (Δ15N>0), with large variations in the Δ15N between tissue proteins. Δ15N values were markedly lower in tissue proteins of rats fed milk proteins compared to those fed soy proteins, in all sampled tissues except in the intestine, and the amplitude of Δ15N differences between diets differed between tissues. Both between-tissue and between-diet Δ15N differences are probably related to modulations of the relative orientation of dietary and endogenous amino acids in the different metabolic pathways. More specifically, the smaller Δ15N values observed in tissue proteins with milk than soy dietary protein may be due to a slightly more direct channeling of dietary amino acids for tissue protein renewal and to a lower recycling of amino acids through fractionating pathways. In conclusion, the present data indicate that natural Δ15N of tissue are sensitive markers of the specific subtle regional modifications of the protein and amino acid metabolism induced by the protein dietary source

    Letter: Comparing medically and surgically treated CAD patients.

    No full text

    Is a Chimera the Answer?

    No full text
    corecore