3 research outputs found

    Modularization of open online courses on the eGov-Campus : Prospects and challenges

    Full text link
    Modularization describes the transformation of MOOCs from a comprehensive academic course format into smaller, more manageable learning offerings. It can be seen as one of the prerequisites for the successful implementation of MOOC-based micro credentials in professional education and training. This short paper reports on the development and application of a modularization framework for Open Online Courses. Using the example of eGov-Campus, a German MOOC provider for the public sector linked to both academia and formal professional development, the structural specifications for modularized MOOC offerings and a methodology for course transformation as well as associated challenges in technology, organization and educational design are outlined. Following on from this, future prospects are discussed under the headings of individualization, certification and integration

    Multivariate Demand Forecasting for Rental Bike Systems Based on an Unobserved Component Model

    No full text
    Many German cities, municipalities and transport associations are expanding their bike-sharing systems (BSS) to offer citizens a cost-effective and climate-friendly means of transport and an alternative to private motorized transport (PMT). However, operators face the challenge of generating high-quality predictive analyses and time series forecasts. In particular, the prediction of demand is a key component to foster data-driven decisions. To address this problem, an Unobserved Component Model (UCM) has been developed to predict the monthly rentals of a BSS, whereby the station-based BSS VRNnextbike, including over 2000 bikes, 297 stations and 21 municipalities, is employed as an example. The model decomposes the time series into trend, seasonal, cyclical, auto-regressive and irregular components for statistical modeling. Additionally, the model includes exogenous factors such as weather, user behavior (e.g., traveled distance), school holidays and COVID-19 relevant covariates as independent effects to calculate scenario based forecasts. It can be shown that the UCM calculates reasonably accurate forecasts and outperforms classical time series models such as ARIMA(X) or SARIMA(X). Improvements were observed in model quality in terms of AIC/BIC (2.5% to 22%) and a reduction in error metrics from 15% to 45% depending on the considered model

    Multivariate Demand Forecasting for Rental Bike Systems Based on an Unobserved Component Model

    No full text
    Many German cities, municipalities and transport associations are expanding their bike-sharing systems (BSS) to offer citizens a cost-effective and climate-friendly means of transport and an alternative to private motorized transport (PMT). However, operators face the challenge of generating high-quality predictive analyses and time series forecasts. In particular, the prediction of demand is a key component to foster data-driven decisions. To address this problem, an Unobserved Component Model (UCM) has been developed to predict the monthly rentals of a BSS, whereby the station-based BSS VRNnextbike, including over 2000 bikes, 297 stations and 21 municipalities, is employed as an example. The model decomposes the time series into trend, seasonal, cyclical, auto-regressive and irregular components for statistical modeling. Additionally, the model includes exogenous factors such as weather, user behavior (e.g., traveled distance), school holidays and COVID-19 relevant covariates as independent effects to calculate scenario based forecasts. It can be shown that the UCM calculates reasonably accurate forecasts and outperforms classical time series models such as ARIMA(X) or SARIMA(X). Improvements were observed in model quality in terms of AIC/BIC (2.5% to 22%) and a reduction in error metrics from 15% to 45% depending on the considered model
    corecore