245 research outputs found

    Charge order induced by electron-lattice interaction in NaV2O5

    Full text link
    We present Density Matrix Renormalization Group calculations of the ground-state properties of quarter-filled ladders including static electron-lattice coupling. Isolated ladders and two coupled ladders are considered, with model parameters obtained from band-structure calculations for α′\alpha^\prime-NaV2_2O5_5. The relevant Holstein coupling to the lattice causes static out-of-plane lattice distortions, which appear concurrently with a charge-ordered state and which exhibit the same zigzag pattern observed in experiments. The inclusion of electron-lattice coupling drastically reduces the critical nearest-neighbor Coulomb repulsion VcV_c needed to obtain the charge-ordered state. No spin gap is present in the ordered phase. The charge ordering is driven by the Coulomb repulsion and the electron-lattice interaction. With electron-lattice interaction, coupling two ladders has virtually no effect on VcV_c or on the characteristics of the charge-ordered phase. At V=0.46\eV, a value consistent with previous estimates, the lattice distortion, charge gap, charge order parameter, and the effective spin coupling are in good agreement with experimental data for NaV2_2O_5$.Comment: 7 pages, 9 figure

    Optical conductivity of wet DNA

    Full text link
    Motivated by recent experiments we have studied the optical conductivity of DNA in its natural environment containing water molecules and counter ions. Our density functional theory calculations (using SIESTA) for four base pair B-DNA with order 250 surrounding water molecules suggest a thermally activated doping of the DNA by water states which generically leads to an electronic contribution to low-frequency absorption. The main contributions to the doping result from water near DNA ends, breaks, or nicks and are thus potentially associated with temporal or structural defects in the DNA.Comment: 4 pages, 4 figures included, final version, accepted for publication in Phys. Rev. Let

    Z7Z_7 Orbifold Models in M-Theory

    Full text link
    Among T7/ΓT^7/\Gamma orbifold compactifications of MM-theory, we examine models containing the particle physics Standard Model in four-dimensional spacetimes, which appear as fixed subspaces of the ten-dimensional spacetimes at each end of the interval, I1≃S1/Z2I^1\simeq S^1/Z_2, spanning the 11th11^\text{th} dimension. Using the Z7Z_7 projection to break the E8E_8 gauge symmetry in each of the four-planes and a limiting relation to corresponding heterotic string compactifications, we discuss the restrictions on the possible resulting gauge field and matter spectra. In particular, some of the states are non-local: they connect two four-dimensional Worlds across the 11th11^\text{th} dimension. We illustrate our programmable calculations of the matter field spectrum, including the anomalous U(1) factor which satisfies a universal Green-Schwarz relation, discuss a Dynkin diagram technique to showcase a model with SU(3)×SU(2)×U(1)5SU(3)\times SU(2)\times U(1)^5 gauge symmetry, and discuss generalizations to higher order orbifolds.Comment: 23 pages, 2 figures, 4 tables; LaTeX 3 time

    Effective Symmetries of the Minimal Supermultiplet of N = 8 Extended Worldline Supersymmetry

    Full text link
    A minimal representation of the N = 8 extended worldline supersymmetry, known as the `ultra-multiplet', is closely related to a family of supermultiplets with the same, E(8) chromotopology. We catalogue their effective symmetries and find a Spin(4) x Z(2) subgroup common to them all, which explains the particular basis used in the original construction. We specify a constrained superfield representation of the supermultiplets in the ultra-multiplet family, and show that such a superfield representation in fact exists for all adinkraic supermultiplets. We also exhibit the correspondences between these supermultiplets, their Adinkras and the E(8) root lattice bases. Finally, we construct quadratic Lagrangians that provide the standard kinetic terms and afford a mixing of an even number of such supermultiplets controlled by a coupling to an external 2-form of fluxes.Comment: 13 Figure

    Codes and Supersymmetry in One Dimension

    Full text link
    Adinkras are diagrams that describe many useful supermultiplets in D=1 dimensions. We show that the topology of the Adinkra is uniquely determined by a doubly even code. Conversely, every doubly even code produces a possible topology of an Adinkra. A computation of doubly even codes results in an enumeration of these Adinkra topologies up to N=28, and for minimal supermultiplets, up to N=32.Comment: 48 pages, a new version that combines arXiv:0811.3410 and parts of arXiv:0806.0050, for submission for publicatio

    Worldsheet Matter Superfields on Half-Shell

    Full text link
    In this paper we discuss some of the effects of using "unidexterous" worldsheet superfields, which satisfy worldsheet differential constraints and so are partly on-shell, i.e., on half-shell. Most notably, this results in a stratification of the field space that reminds of "brane-world" geometries. Linear dependence on such superfields provides a worldsheet generalization of the super-Zeeman effect. In turn, non-linear dependence yields additional left-right asymmetric dynamical constraints on the propagating fields, again in a stratified fashion.Comment: 15 pages, 2 figures; minor algebraic correction

    On the Construction and the Structure of Off-Shell Supermultiplet Quotients

    Full text link
    Recent efforts to classify representations of supersymmetry with no central charge have focused on supermultiplets that are aptly depicted by Adinkras, wherein every supersymmetry generator transforms each component field into precisely one other component field or its derivative. Herein, we study gauge-quotients of direct sums of Adinkras by a supersymmetric image of another Adinkra and thus solve a puzzle from Ref.[2]: The so-defined supermultiplets do not produce Adinkras but more general types of supermultiplets, each depicted as a connected network of Adinkras. Iterating this gauge-quotient construction then yields an indefinite sequence of ever larger supermultiplets, reminiscent of Weyl's construction that is known to produce all finite-dimensional unitary representations in Lie algebras.Comment: 20 pages, revised to clarify the problem addressed and solve

    A Superfield for Every Dash-Chromotopology

    Full text link
    The recent classification scheme of so-called adinkraic off-shell supermultiplets of N-extended worldline supersymmetry without central charges finds a combinatorial explosion. Completing our earlier efforts, we now complete the constructive proof that all of these trillions or more of supermultiplets have a superfield representation. While different as superfields and supermultiplets, these are still super-differentially related to a much more modest number of minimal supermultiplets, which we construct herein.Comment: 13 pages, integrated illustration

    Renormalization approach to many-particle systems

    Full text link
    This paper presents a renormalization approach to many-particle systems. By starting from a bare Hamiltonian H=H0+H1{\cal H}= {\cal H}_0 +{\cal H}_1 with an unperturbed part H0{\cal H}_0 and a perturbation H1{\cal H}_1,we define an effective Hamiltonian which has a band-diagonal shape with respect to the eigenbasis of H0{\cal H}_0. This means that all transition matrix elements are suppressed which have energy differences larger than a given cutoff λ\lambda that is smaller than the cutoff Λ\Lambda of the original Hamiltonian. This property resembles a recent flow equation approach on the basis of continuous unitary transformations. For demonstration of the method we discuss an exact solvable model, as well as the Anderson-lattice model where the well-known quasiparticle behavior of heavy fermions is derived.Comment: 11 pages, final version, to be published in Phys. Rev.

    Coexistence of superconductivity and charge-density waves in a two-dimensional Holstein model at half-filling

    Full text link
    In one dimension the coupling of electrons to phonons leads to a transition from a metallic to a Peierls distorted insulated state if the coupling exceeds a critical value. On the other hand, in two dimensions the electron-phonon interaction may also lead to the formation of Cooper pairs. This competition of superconductivity and charge order (in conjunction with a lattice distortion) is studied in this letter by means of the projector-based renormalization method (PRM). Increasing the electron-phonon interaction, we find a crossover behavior between a purely superconducting state and a charge-density wave where a well-defined parameter range of coexistence of superconductivity and lattice distortion exists.Comment: 11 pages, 2 figure
    • …
    corecore