2 research outputs found

    Biological activity of Ipomoea pauciflora Martens and Galeotti (Convolvulaceae) extracts and fractions on larvae of Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae)

    Get PDF
    Hexane, chloroform and methanol extracts of different parts of Ipomoea pauciflora were tested for their effects on the survival and development of Fall Armyworm (Spodoptera frugiperda), a Lepidoptera pest. For seven days, neonatal larvae (grown at 27 ± 2°C with a 16: 8 (L: D) h photoperiod) were exposed to different concentrations of crude I. pauciflora extracts (ranging from 0 to 4 mg/ml) that were incorporated into an artificial diet. Surviving larvae were weighed at days 6, 9 and 13 and were maintained until moths emerged. Eleven of the 18 crude extracts showed more than 30% larval mortality. The highest mortality was produced by hexane and chloroform extracts of seeds at 4 mg/ml(96.9 and 93.8%, respectively), with LC50 values of 1.85 mg/ml and 0.54 mg/ml, respectively. Fractions of both seed extracts were isolated by gravity column chromatography over silica gel and analyzed for their active compounds. Eight fractions of the hexane extract and six fractions of the chloroform extract from I. pauciflora seeds, exhibited larvicidal effects at 1 mg/ml (mortality from 33.3 to 88.9% and from 47.2 to 77%, respectively). Changes in larval weight were observed as compared with the control group. Phytochemical analysis through GC-MS and H1 NMR revealed the presence of fatty acids and aldehydes in the active fractions. These results indicate that the bioactive extracts from the seed of I. pauciflora can induce lethal toxicity in S. frugiperda larvae or affect the weight of the surviving larvae

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore