226 research outputs found

    Individual rules for trail pattern formation in Argentine ants (Linepithema humile)

    Get PDF
    We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed.Comment: final version, 9 figures, submitted to Plos Computational Biology (accepted

    Prominent Plasmacytosis Following Intravenous Immunoglobulin Correlates with Clinical Improvement in Guillain-Barré Syndrome

    Get PDF
    BACKGROUND: High doses of pooled polyclonal IgG are commonly used to treat numerous autoimmune diseases. Their mode of action nevertheless remains only partially explained. At the same time, until now, no early biological marker has been able to predict their efficacy. METHODOLOGY/PRINCIPAL FINDINGS: In a first pilot retrospective analysis, we reviewed white blood cell counts and blood smears in consecutive patients with autoimmune disease (n = 202) and non-autoimmune disease (n = 104). Autoimmune patients received either intravenous immunoglobulin (IVIg, n = 103), plasma exchange (n = 78) or no specific treatment (n = 21). We then prospectively monitored consecutive autoimmune patients with IVIg injection (n = 67), or without any specific treatment (n = 10) using the same routine laboratory tests, as well as flow cytometry. Both retrospective and prospective analyses identified large plasma-cell mobilization exclusively in IVIg-treated autoimmune patients 7 days after initiation of treatment. The majority of IVIg-mobilized plasma cells were immature HLA-DR(high)/CD138(low)/CXCR4(low) plasma cells expressing intracellular immunoglobulin G which were neither IVIg- nor human IgG-specific. Importantly, we found a strong negative correlation between the absolute number of IVIg-mobilized plasma cells and time to improve neurological function in both retrospective and prospective studies of Guillain-Barré syndrome (GBS), (r = -0.52, p = 0.0031, n = 30, r = -0.47, p = 0.0028, n = 40, respectively). CONCLUSIONS/SIGNIFICANCE: IVIg promotes immature plasma-cell mobilization in patients with GBS, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis and inflammatory myopathy. Prominent day 7 plasma-cell mobilization is a favourable prognostic marker in patients with GBS receiving IVIg treatment

    Breaking Functional Connectivity into Components: A Novel Approach Using an Individual-Based Model, and First Outcomes

    Get PDF
    Landscape connectivity is a key factor determining the viability of populations in fragmented landscapes. Predicting ‘functional connectivity’, namely whether a patch or a landscape functions as connected from the perspective of a focal species, poses various challenges. First, empirical data on the movement behaviour of species is often scarce. Second, animal-landscape interactions are bound to yield complex patterns. Lastly, functional connectivity involves various components that are rarely assessed separately. We introduce the spatially explicit, individual-based model FunCon as means to distinguish between components of functional connectivity and to assess how each of them affects the sensitivity of species and communities to landscape structures. We then present the results of exploratory simulations over six landscapes of different fragmentation levels and across a range of hypothetical bird species that differ in their response to habitat edges. i) Our results demonstrate that estimations of functional connectivity depend not only on the response of species to edges (avoidance versus penetration into the matrix), the movement mode investigated (home range movements versus dispersal), and the way in which the matrix is being crossed (random walk versus gap crossing), but also on the choice of connectivity measure (in this case, the model output examined). ii) We further show a strong effect of the mortality scenario applied, indicating that movement decisions that do not fully match the mortality risks are likely to reduce connectivity and enhance sensitivity to fragmentation. iii) Despite these complexities, some consistent patterns emerged. For instance, the ranking order of landscapes in terms of functional connectivity was mostly consistent across the entire range of hypothetical species, indicating that simple landscape indices can potentially serve as valuable surrogates for functional connectivity. Yet such simplifications must be carefully evaluated in terms of the components of functional connectivity they actually predict
    • …
    corecore