31 research outputs found

    Considerations when assessing endurance in combat sport athletes

    Get PDF
    Combat sports encompass a range of sports, each involving physical combat between participants. Such sports are unique, with competitive success influenced by a diverse range of physical characteristics. Effectively identifying and evaluating each characteristic is essential for athletes and support staff alike. Previous research investigating the relationship between combat sports performance and measures of strength and power is robust. However, research investigating the relationship between combat sports performance and assessments of endurance is less conclusive. As a physical characteristic, endurance is complex and influenced by multiple factors including mechanical efficiency, maximal aerobic capacity, metabolic thresholds, and anaerobic capacities. To assess endurance of combat sports athletes, previous research has employed methods ranging from incremental exercise tests to circuits involving sports-specific techniques. These tests range in their ability to discern various physiological attributes or performance characteristics, with varying levels of accuracy and ecological validity. In fact, it is unclear how various physiological attributes influence combat sport endurance performance. Further, the sensitivity of sports specific skills in performance based tests is also unclear. When developing or utilizing tests to better understand an athletes\u27 combat sports-specific endurance characteristic, it is important to consider what information the test will and will not provide. Additionally, it is important to determine which combination of performance and physiological assessments will provide the most comprehensive picture. Strengthening the understanding of assessing combat sport-specific endurance as a physiological process and as a performance metric will improve the quality of future research and help support staff effectively monitor their athlete\u27s characteristics

    Preferential phosphorus placement improves the productivity and competitiveness of tropical pasture legumes

    Get PDF
    Extensive grazing systems often receive minimal fertiliser due to the risk associated with using relatively expensive inputs. Nevertheless, nutrient applications are known to improve pasture productivity, and the benefit of applying fertiliser is being more widely accepted. Two tropical pasture mixes (Digit/Desmanthus and Rhodes/Centro) were established in plastic boxes containing phosphorus (P) responsive soil to investigate shoot yield and P fertiliser recovery. The grasses and legumes were planted in separate rows, and three P treatments were applied along with the seed ('BOTH low-P' had 2kg P ha−1 banded below both components, 'BOTH high-P' had 12kg P ha−1 banded below both components and 'LEGUME superhigh-P' had 12kg P ha−1 banded below the legume only). The P applied below the legumes was labelled with 32P-radioisotope tracer. When P fertiliser was applied below both components, the grasses consistently out-yielded the legumes (avg. legume content=29%). Preferential fertiliser application below the legumes increased the average legume content of the two pasture mixes to 66%. Legume tissue P derived from applied P fertiliser increased from 20% to 77% as the P application rate was increased. However, total recovery of applied P by the legumes was relatively low in each of the treatments (≤7% of applied P). These collective results demonstrate that a preferential application of P fertiliser can benefit legume productivity, with applied P being a significant proportion of plant tissue P. Although only a small proportion of applied P was recovered within the seven-week growth period, it is expected that this fertiliser application at planting will remain beneficial for a large proportion of the growing season following pasture establishment

    Considerations When Assessing Endurance in Combat Sport Athletes

    Get PDF
    Combat sports encompass a range of sports, each involving physical combat between participants. Such sports are unique, with competitive success influenced by a diverse range of physical characteristics. Effectively identifying and evaluating each characteristic is essential for athletes and support staff alike. Previous research investigating the relationship between combat sports performance and measures of strength and power is robust. However, research investigating the relationship between combat sports performance and assessments of endurance is less conclusive. As a physical characteristic, endurance is complex and influenced by multiple factors including mechanical efficiency, maximal aerobic capacity, metabolic thresholds, and anaerobic capacities. To assess endurance of combat sports athletes, previous research has employed methods ranging from incremental exercise tests to circuits involving sports-specific techniques. These tests range in their ability to discern various physiological attributes or performance characteristics, with varying levels of accuracy and ecological validity. In fact, it is unclear how various physiological attributes influence combat sport endurance performance. Further, the sensitivity of sports specific skills in performance based tests is also unclear. When developing or utilizing tests to better understand an athletes’ combat sports-specific endurance characteristic, it is important to consider what information the test will and will not provide. Additionally, it is important to determine which combination of performance and physiological assessments will provide the most comprehensive picture. Strengthening the understanding of assessing combat sport-specific endurance as a physiological process and as a performance metric will improve the quality of future research and help support staff effectively monitor their athlete’s characteristics

    Banded application improves the recovery of phosphorus fertiliser in a temperate pasture sward containing red clover

    No full text
    Phosphorus (P) fertiliser is commonly broadcast onto existing pasture swards for ease and cost of application. However, improvements in P acquisition efficiency may be achieved by banding fertiliser. Micro-swards of red clover (Trifolium pratense L.) were grown in intact sandy loam soil cores with a 33P-labelled fertiliser source. Dissolved P fertiliser was applied either to the surface or at a depth of 30 mm, to either small or large volumes of soil. Growth rates were modest and significant differences were not observed for shoot yield among treatments. However, shoot P content and P recovery were 37% and 35% higher, respectively, when P fertiliser was distributed across a larger soil volume when compared to concentrated points. Similarly, banded treatments increased recovery by 40% compared to surface-applied fertiliser. The results suggested that banded application of a low concentration liquid P fertiliser may improve the recovery of P fertiliser by pasture legumes grown in soil with a low phosphorus buffering index (PBI)

    Differences in phosphorus acquisition and critical phosphorus requirements among nine Desmanthus spp. genotypes

    No full text
    The extensive grazing systems of northern Australia are dominated by C4 grasses and are established in N- and P-responsive soils that receive minimal nutrient input. Under these conditions, tropical pasture legumes are expected to improve the quality of grazing forage and fix atmospheric N2. However, legume persistence is relatively poor, which may be due to a presumed disparity in P requirements among tropical pasture species. This disparity suggests that P-efficient legumes may improve legume persistence, yet the P requirements of many tropical pasture legumes remain unquantified. Nine Desmanthus spp. genotypes were grown in pots to determine differences in shoot yield and root morphology in response to soil P supply (0-100 mg applied P kg-1 soil; 5-63 mg Colwell P kg-1 soil). The shoot yield of each genotype increased in response to increased P supply. When P supply was adequate for maximum plant growth, the shoot yield of the best genotype (3.5 g DM pot-1; JCU 9) was 1.7-fold larger than that of the next most productive genotype. There were also substantial differences in the critical external P requirements of the genotypes (29.4-64.0 mg P kg-1 soil), although these differences did not always reflect the efficiency of dry matter production per unit of applied P fertiliser. Differences in shoot yield and P acquisition were positively associated with differences in the development of root length. The results indicated that P-efficient genotypes of Desmanthus spp. can be identified for improved growth in the P-responsive pastures of northern Australia. These genotypes may compete more effectively with C4 grasses and form resilient pasture swards as climate patterns change

    Emergence and Early Growth of Four Desmanthus Species in Three Alkaline Clay Soils

    No full text
    Tropical pasture legumes such as Desmanthus are expected to improve pasture productivity in the extensive grazing systems of Northern Australia. However, the soils in these areas are often hostile (e.g., hard-setting and nutrient-deficient), which reduces legume emergence and establishment. Furthermore, these soils are often not ameliorated with amendments such as gypsum or starter fertilisers before planting. A pot trial was conducted to investigate differences in the emergence and early growth of four Desmanthus species. The legumes were grown in three alkaline clay soils that were unamended or amended with either gypsum (1 t CaSO4.2H2O ha−1 equivalent), a starter MAP fertiliser (12 kg P ha−1 equivalent), or both gypsum and the starter fertiliser. Seedling emergence was recorded daily and shoot yield was determined after six weeks’ growth. Final seedling emergence (as a percentage of viable seeds) varied among the Desmanthus species (c.f. D. leptophyllus = 63%, D. pernambucanus = 68%, D. bicornutus = 85%, and D. virgatus = 86%). On average, across the treatments, gypsum increased seedling emergence by 15%, whereas the starter fertiliser had no effect. The shoot yields and shoot phosphorus content of the Desmanthus species generally increased in response to the starter fertiliser. The collective results demonstrated that there were differences in emergence and early growth among the four Desmanthus species, which indicates that Desmanthus cultivar selection may be important in the relatively hostile soils of Northern Australia. Gypsum was an effective amendment for seedling emergence, whereas the starter fertiliser was an effective amendment to increase legume productivity

    Warm-Season Pasture Species Respond to Subsurface Placement of Phosphorus Fertiliser

    No full text
    The root traits of many warm-season pasture species have not been characterised thoroughly. Depending on the nature of legume root architecture, alternative phosphorus (P) application strategies may improve the success of legume establishment and persistence, particularly if legumes exhibit a spatially responsive root system. The purpose of the present experiment was to investigate the root morphology of several warm-season pasture species and to determine the response of these species to a subsurface application of P fertiliser. Monocultures of two grasses (Panicum coloratum and Digitaria eriantha) and two legumes (Medicago sativa and Desmanthus spp.) were established in pots to investigate root morphology and P acquisition in response to three soil-P distribution treatments. The P fertiliser that was applied to the subsurface ‘band’ layer was labelled with 32P-radioisotope to determine P recovery. There were significant differences in shoot yield and root morphology among the species. The largest shoot yields were usually produced by plants grown in the uniform high-P treatment, while the grasses generally produced longer roots more efficiently than the legumes across the three soil-P distribution treatments. Nevertheless, each species responded to the banded high-P treatment by acquiring more P from the zone of P enrichment (banded high-P = 31% cf., uniform low-P = 3%, and uniform high-P = 9%). This result suggests that a subsurface application of P fertiliser at the planting stage will benefit warm-season pasture species, particularly grasses that are highly responsive to fertiliser placement. Nevertheless, preferential placement of fertiliser below legumes may improve the productivity of this component if their root systems have more time to respond spatially

    Premier Digit and Progardes Desmanthus compete effectively for applied phosphorus under mixed sward conditions

    No full text
    Grasses generally dominate the pastures of northern Australia. This may be associated, in part, with varietal differences in critical phosphorus (P) requirements that influence the competitive ability and persistence of the legume component. However, the effect of plant competition on shoot yield responses to soil P supply remain unquantified in tropical pasture swards. Micro-swards of Premier Digit and Progardes Desmanthus were grown, both as monocultures and mixed plantings, in soil amended with five rates of P fertiliser to determine the influence of sward conditions on shoot yield and tissue P. The shoot yield and tissue P concentrations of both species increased in response to soil P supply, with the shoot yield of Progardes Desmanthus in mixed plantings representing between 33–47% of the total yield of Digit and Desmanthus combined. The critical external P requirements of Progardes Desmanthus were generally equal to or lower than that of Premier Digit, yet both species competed effectively for applied P. Therefore, Premier Digit and Progardes Desmanthus may be suitable companion pasture species for establishment in the low-P soils of northern Australia

    An image processing and analysis tool for identifying and analysing complex plant root systems in 3D soil using non-destructive analysis: Root1.

    No full text
    The objective of this study was to develop a flexible and free image processing and analysis solution, based on the Public Domain ImageJ platform, for the segmentation and analysis of complex biological plant root systems in soil from x-ray tomography 3D images. Contrasting root architectures from wheat, barley and chickpea root systems were grown in soil and scanned using a high resolution micro-tomography system. A macro (Root1) was developed that reliably identified with good to high accuracy complex root systems (10% overestimation for chickpea, 1% underestimation for wheat, 8% underestimation for barley) and provided analysis of root length and angle. In-built flexibility allowed the user interaction to (a) amend any aspect of the macro to account for specific user preferences, and (b) take account of computational limitations of the platform. The platform is free, flexible and accurate in analysing root system metrics
    corecore