216 research outputs found

    Nonparametric maximum likelihood approach to multiple change-point problems

    Get PDF
    In multiple change-point problems, different data segments often follow different distributions, for which the changes may occur in the mean, scale or the entire distribution from one segment to another. Without the need to know the number of change-points in advance, we propose a nonparametric maximum likelihood approach to detecting multiple change-points. Our method does not impose any parametric assumption on the underlying distributions of the data sequence, which is thus suitable for detection of any changes in the distributions. The number of change-points is determined by the Bayesian information criterion and the locations of the change-points can be estimated via the dynamic programming algorithm and the use of the intrinsic order structure of the likelihood function. Under some mild conditions, we show that the new method provides consistent estimation with an optimal rate. We also suggest a prescreening procedure to exclude most of the irrelevant points prior to the implementation of the nonparametric likelihood method. Simulation studies show that the proposed method has satisfactory performance of identifying multiple change-points in terms of estimation accuracy and computation time.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1210 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    GPT4Battery: An LLM-driven Framework for Adaptive State of Health Estimation of Raw Li-ion Batteries

    Full text link
    State of health (SOH) is a crucial indicator for assessing the degradation level of batteries that cannot be measured directly but requires estimation. Accurate SOH estimation enhances detection, control, and feedback for Li-ion batteries, allowing for safe and efficient energy management and guiding the development of new-generation batteries. Despite the significant progress in data-driven SOH estimation, the time and resource-consuming degradation experiments for generating lifelong training data pose a challenge in establishing one large model capable of handling diverse types of Li-ion batteries, e.g., cross-chemistry, cross-manufacturer, and cross-capacity. Hence, this paper utilizes the strong generalization capability of large language model (LLM) to proposes a novel framework for adaptable SOH estimation across diverse batteries. To match the real scenario where unlabeled data sequentially arrives in use with distribution shifts, the proposed model is modified by a test-time training technique to ensure estimation accuracy even at the battery's end of life. The validation results demonstrate that the proposed framework achieves state-of-the-art accuracy on four widely recognized datasets collected from 62 batteries. Furthermore, we analyze the theoretical challenges of cross-battery estimation and provide a quantitative explanation of the effectiveness of our method

    Screening Driving Transcription Factors in the Processing of Gastric Cancer

    Get PDF
    Background. Construction of the transcriptional regulatory network can provide additional clues on the regulatory mechanisms and therapeutic applications in gastric cancer. Methods. Gene expression profiles of gastric cancer were downloaded from GEO database for integrated analysis. All of DEGs were analyzed by GO enrichment and KEGG pathway enrichment. Transcription factors were further identified and then a global transcriptional regulatory network was constructed. Results. By integrated analysis of the six eligible datasets (340 cases and 43 controls), a bunch of 2327 DEGs were identified, including 2100 upregulated and 227 downregulated DEGs. Functional enrichment analysis of DEGs showed that digestion was a significantly enriched GO term for biological process. Moreover, there were two important enriched KEGG pathways: cell cycle and homologous recombination. Furthermore, a total of 70 differentially expressed TFs were identified and the transcriptional regulatory network was constructed, which consisted of 566 TF-target interactions. The top ten TFs regulating most downstream target genes were BRCA1, ARID3A, EHF, SOX10, ZNF263, FOXL1, FEV, GATA3, FOXC1, and FOXD1. Most of them were involved in the carcinogenesis of gastric cancer. Conclusion. The transcriptional regulatory network can help researchers to further clarify the underlying regulatory mechanisms of gastric cancer tumorigenesis

    ManiCLIP: Multi-Attribute Face Manipulation from Text

    Full text link
    In this paper we present a novel multi-attribute face manipulation method based on textual descriptions. Previous text-based image editing methods either require test-time optimization for each individual image or are restricted to single attribute editing. Extending these methods to multi-attribute face image editing scenarios will introduce undesired excessive attribute change, e.g., text-relevant attributes are overly manipulated and text-irrelevant attributes are also changed. In order to address these challenges and achieve natural editing over multiple face attributes, we propose a new decoupling training scheme where we use group sampling to get text segments from same attribute categories, instead of whole complex sentences. Further, to preserve other existing face attributes, we encourage the model to edit the latent code of each attribute separately via an entropy constraint. During the inference phase, our model is able to edit new face images without any test-time optimization, even from complex textual prompts. We show extensive experiments and analysis to demonstrate the efficacy of our method, which generates natural manipulated faces with minimal text-irrelevant attribute editing. Code and pre-trained model will be released

    Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior

    Full text link
    Recent works on text-to-3d generation show that using only 2D diffusion supervision for 3D generation tends to produce results with inconsistent appearances (e.g., faces on the back view) and inaccurate shapes (e.g., animals with extra legs). Existing methods mainly address this issue by retraining diffusion models with images rendered from 3D data to ensure multi-view consistency while struggling to balance 2D generation quality with 3D consistency. In this paper, we present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model. Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach. Moreover, to ensure accurate appearances of different views, we further modulate the output of the 2D diffusion model to the correct patterns of the template views without altering the generated object's style. These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model. Extensive experiments show our method can largely improve the multi-view consistency while retaining fidelity and diversity. Our project page is available at: https://stellarcheng.github.io/Sculpt3D/.Comment: Accepted by CVPR 2024. Project Page: https://stellarcheng.github.io/Sculpt3D

    Intrinsic Cerebro-Cerebellar Functional Connectivity Reveals the Function of Cerebellum VI in Reading-Related Skills

    Get PDF
    Funding This work was supported by grants from the National Natural Science Foundation of China (NSFC: 31971036, 31971039, and 31571158).Peer reviewedPublisher PD

    GaussianEditor: Swift and Controllable 3D Editing with Gaussian Splatting

    Full text link
    3D editing plays a crucial role in many areas such as gaming and virtual reality. Traditional 3D editing methods, which rely on representations like meshes and point clouds, often fall short in realistically depicting complex scenes. On the other hand, methods based on implicit 3D representations, like Neural Radiance Field (NeRF), render complex scenes effectively but suffer from slow processing speeds and limited control over specific scene areas. In response to these challenges, our paper presents GaussianEditor, an innovative and efficient 3D editing algorithm based on Gaussian Splatting (GS), a novel 3D representation. GaussianEditor enhances precision and control in editing through our proposed Gaussian semantic tracing, which traces the editing target throughout the training process. Additionally, we propose Hierarchical Gaussian splatting (HGS) to achieve stabilized and fine results under stochastic generative guidance from 2D diffusion models. We also develop editing strategies for efficient object removal and integration, a challenging task for existing methods. Our comprehensive experiments demonstrate GaussianEditor's superior control, efficacy, and rapid performance, marking a significant advancement in 3D editing. Project Page: https://buaacyw.github.io/gaussian-editor/Comment: Project Page: https://buaacyw.github.io/gaussian-editor/ Code: https://github.com/buaacyw/GaussianEdito
    • ā€¦
    corecore