23,683 research outputs found

    Revisiting B_s\to\mu^+\mu^- and B\to K^{(*)}\mu^+\mu^- decays in the MSSM with and without R-parity

    Full text link
    The rare decays B_s -> \mu^+\mu^- and B -> K^{(*)}\mu^+\mu^- are sensitive to new particles and couplings via their interferences with the standard model contributions. Recently, the upper bound on B(B_s -> \mu^+\mu^-) has been improved significantly by the CMS, LHCb, CDF, and D{\O} experiments. Combining with the measurements of B(B-> K^{(*)}\mu^+\mu^-), we derive constraints on the relevant parameters of minimal supersymmetic standard model with and without R-parity, and examine their contributions to the dimuon forward-backward asymmetry in B-> K^{*}\mu^+\mu^- decay. We find that (i) the contribution of R-parity violating coupling products \lambda^{\prime}_{2i2}\lambda^{\prime*}_{2i3} due to squark exchange is comparable with the theoretical uncertainties in B-> K \mu^+\mu^- decay, but still could be significant in B-> K^{*}\mu^+\mu^- decay and could account for the forward-backward asymmetry in all dimuon invariant mass regions; (ii) the constrained mass insertion (\delta^{u}_{LL})_{23} could have significant contribution to dA_{FB}(B-> K^{*}\mu^+\mu^-)/ds, and such effects are favored by thr recent results of the Belle, CDF, and LHCb experiments.Comment: 20 pages, 9 figures, published versio

    Single-walled carbon nanotube bundle under hydrostatic pressure studied by the first-principles calculations

    Full text link
    The structural, electronic, optical and vibrational properties of the collapsed (10,10) single-walled carbon nanotube bundle under hydrostatic pressure have been studied by the first-principles calculations. Some features are observed in the present study: First, a collapsed structure is found, which is distinct from both of the herringbone and parallel structures obtained previously. Secondly, a pseudo-gap induced by the collapse appears along the symmetry axis \textit{Γ\Gamma X}. Thirdly, the relative orientation between the collapsed tubes has an important effect on their electronic, optical and vibrational properties, which provides an efficient experimental method to distinguish unambiguously three different collapsed structures.Comment: 14 pages, 6 figure
    • …
    corecore