222 research outputs found

    Illegal Intrusion Detection of Internet of Things Based on Deep Mining Algorithm

    Get PDF
    In this study, to reduce the influence of The Internet of Things (IoT) illegal intrusion on the transmission effect, and ensure IoT safe operation, an illegal intrusion detection method of the Internet of Things (IoT) based on deep mining algorithm was designed to accurately detect IoT illegal intrusion. Moreover, this study collected the data in the IoT through data packets and carries out data attribute mapping on the collected data, transformed the character information into numerical information, implemented standardization and normalization processing on the numerical information, and optimized the processed data by using a regional adaptive oversampling algorithm to obtain an IoT data training set. The IoT data training set was taken as the input data of the improved sparse auto-encoder neural network. The hierarchical greedy training strategy was used to extract the feature vector of the sparse IoT illegal intrusion data that were used as the inputs of the extreme learning machine classifier to realize the classification and detection of the IoT illegal intrusion features. The experimental results indicate that the feature extraction of the illegal intrusion data of the IoT can effectively reduce the feature dimension of the illegal intrusion data of the IoT to less than 30 and the dimension of the original data. The recall rate, precision, and F1 value of the IoT intrusion detection are 98.3%, 98.7%, and 98.6%, respectively, which can accurately detect IoT intrusion attacks. The conclusion demonstrates that the intrusion detection of IoT based on deep mining algorithm can achieve accurate detection of IoT illegal intrusion and reduce the influence of IoT illegal intrusion on the transmission effect

    Effect of Freeze-Thaw Cycles on the Internal Structure and Performance of Semirigid Base Materials

    Get PDF
    In this study, we investigate the spatial distributions of the internal structures in semirigid base materials (SRBMs) and explore their effect on the service performance of the SRBMs. X-ray computed tomography (X-ray CT) was used to conduct a spatial voids structure analysis. Three variates were selected to study the factors influencing the spatial distributions of the internal structures, including freeze-thaw cycles, curing time, and cement content. The results show that, with the increase in the number of freezing and thawing cycles, the average porosity, void area, and void number of the SRBM samples increased, and the average void diameters of all samples initially increased and then decreased. These trends led to an increase in the mass loss ratio and strength loss ratio. Increasing the cement content and extending the curing time decreased the average number of voids, average void area, and average void diameter and decreased the mass loss ratio and strength loss ratio of the SRBMs. The top and bottom of the SRBM samples were more porous than the middle of the samples, whereas the maximum value of the average void diameter was observed in the middle of the samples

    Bearing capacity and seismic performance of Y-shaped reinforced concrete bridge piers in a freeze-thaw environment

    Get PDF
    A quantitative study is performed to determine the performance degradation of Y-shaped reinforced concrete bridge piers owing to long-term freeze-thaw damage. The piers are discretized into spatial solid elements using the ANSYS Workbench finite element analysis software, and a spatial model is established. The analysis addresses the mechanical performance of the piers under monotonic loading, and their seismic performance under low-cycle repeated loading. The influence of the number of freeze-thaw cycles, axial compression ratio, and loading direction on the pier bearing capacity index and seismic performance index is investigated. The results show that freeze-thaw damage has an adverse effect on the ultimate bearing capacity and seismic performance of Y-shaped bridge piers in the transverse and longitudinal directions. The pier peak load and displacement ductility coefficient decrease with increasing number of freeze-thaw cycles. The axial compression ratio is an important factor that affects the pier ultimate bearing capacity and seismic performance. Upon increasing the axial compression ratio, the pier peak load increases and the displacement ductility coefficient decreases, the effects of which are more significant in the longitudinal direction

    Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901

    Get PDF
    Embryonic stem cells (ESCs) have the ability to grow indefinitely and retain their pluripotency in culture, and this self-renewal capacity is governed by several crucial molecular pathways controlled by specific regulatory genes and epigenetic modifications. It is reported that multiple epigenetic regulators, such as miRNA and pluripotency factors, can be tightly integrated into molecular pathways and cooperate to maintain self-renewal of ESCs. However, mouse ESCs in serum-containing medium seem to be heterogeneous due to the self-activating differentiation signal of MEK/ERK. Thus, to seek for the crucial miRNA and key regulatory genes that establish ESC properties in MEK/ERK pathway, we performed microarray analysis and small RNA deep-sequencing of J1 mESCs treated with or without PD0325901 (PD), a well-known inhibitor of MEK/ERK signal pathway, followed by verification of western blot analysis and quantitative real-time PCR verification; we found that PD regulated the transcript expressions related to self-renewal and differentiation and antagonized the action of retinoic acid- (RA-) induced differentiation. Moreover, PD can significantly modulate the expressions of multiple miRNAs that have crucial functions in ESC development. Overall, our results demonstrate that PD could enhance ESC self-renewal capacity both by key regulatory genes and ES cell-specific miRNA, which in turn influences ESC self-renewal and cellular differentiation

    Endogenous Type I-C CRISPR-Cas system of Streptococcus equi subsp. zooepidemicus promotes biofilm formation and pathogenicity

    Get PDF
    Streptococcus equi subsp. zooepidemicus (SEZ) is a significant zoonotic pathogen that causes septicemia, meningitis, and mastitis in domestic animals. Recent reports have highlighted high-mortality outbreaks among swine in the United States. Traditionally recognized for its adaptive immune functions, the CRISPR-Cas system has also been implicated in gene regulation, bacterial pathophysiology, virulence, and evolution. The Type I-C CRISPR-Cas system, which is prevalent in SEZ isolates, appears to play a pivotal role in regulating the pathogenicity of SEZ. By constructing a Cas3 mutant strain (ΔCas3) and a CRISPR-deficient strain (ΔCRISPR), we demonstrated that this system significantly promotes biofilm formation and cell adhesion. However, the deficiency in the CRISPR-Cas system did not affect bacterial morphology or capsule production. In vitro studies showed that the CRISPR-Cas system enhances pro-inflammatory responses in RAW264.7 cells. The ΔCas3 and ΔCRISPR mutant strains exhibited reduced mortality rates in mice, accompanied by a decreased bacterial load in specific organs. RNA-seq analysis revealed distinct expression patterns in both mutant strains, with ΔCas3 displaying a broader range of differentially expressed genes, which accounted for over 70% of the differential genes observed in ΔCRISPR. These genes were predominantly linked to lipid metabolism, the ABC transport system, signal transduction, and quorum sensing. These findings enhance our understanding of the complex role of the CRISPR-Cas system in SEZ pathogenesis and provide valuable insights for developing innovative therapeutic strategies to combat infections
    corecore