8 research outputs found

    Functional Causal Bayesian Optimization

    Full text link
    We propose functional causal Bayesian optimization (fCBO), a method for finding interventions that optimize a target variable in a known causal graph. fCBO extends the CBO family of methods to enable functional interventions, which set a variable to be a deterministic function of other variables in the graph. fCBO models the unknown objectives with Gaussian processes whose inputs are defined in a reproducing kernel Hilbert space, thus allowing to compute distances among vector-valued functions. In turn, this enables to sequentially select functions to explore by maximizing an expected improvement acquisition functional while keeping the typical computational tractability of standard BO settings. We introduce graphical criteria that establish when considering functional interventions allows attaining better target effects, and conditions under which selected interventions are also optimal for conditional target effects. We demonstrate the benefits of the method in a synthetic and in a real-world causal graph

    Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice

    Get PDF
    Necessity and sufficiency are the building blocks of all successful explanations. Yet despite their importance, these notions have been conceptually underdeveloped and inconsistently applied in explainable artificial intelligence (XAI), a fast-growing research area that is so far lacking in firm theoretical foundations. In this article, an expanded version of a paper originally presented at the 37th Conference on Uncertainty in Artificial Intelligence (Watson et al., 2021), we attempt to fill this gap. Building on work in logic, probability, and causality, we establish the central role of necessity and sufficiency in XAI, unifying seemingly disparate methods in a single formal framework. We propose a novel formulation of these concepts, and demonstrate its advantages over leading alternatives. We present a sound and complete algorithm for computing explanatory factors with respect to a given context and set of agentive preferences, allowing users to identify necessary and sufficient conditions for desired outcomes at minimal cost. Experiments on real and simulated data confirm our method’s competitive performance against state of the art XAI tools on a diverse array of tasks

    Local explanations via necessity and sufficiency: unifying theory and practice

    Get PDF
    Necessity and sufficiency are the building blocks of all successful explanations. Yet despite their importance, these notions have been conceptually underdeveloped and inconsistently applied in explainable artificial intelligence (XAI), a fast-growing research area that is so far lacking in firm theoretical foundations. Building on work in logic, probability, and causality, we establish the central role of necessity and sufficiency in XAI, unifying seemingly disparate methods in a single formal framework. We provide a sound and complete algorithm for computing explanatory factors with respect to a given context, and demonstrate its flexibility and competitive performance against state of the art alternatives on various tasks

    Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

    Get PDF
    We address the problem of causal effect estima-tion in the presence of unobserved confounding,but where proxies for the latent confounder(s) areobserved. We propose two kernel-based meth-ods for nonlinear causal effect estimation in thissetting: (a) a two-stage regression approach, and(b) a maximum moment restriction approach. Wefocus on the proximal causal learning setting, butour methods can be used to solve a wider classof inverse problems characterised by a Fredholmintegral equation. In particular, we provide a uni-fying view of two-stage and moment restrictionapproaches for solving this problem in a nonlin-ear setting. We provide consistency guaranteesfor each algorithm, and demonstrate that these ap-proaches achieve competitive results on syntheticdata and data simulating a real-world task. In par-ticular, our approach outperforms earlier methodsthat are not suited to leveraging proxy variables

    Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

    Full text link
    We address the problem of causal effect estimation in the presence of unobserved confounding, but where proxies for the latent confounder(s) are observed. We propose two kernel-based methods for nonlinear causal effect estimation in this setting: (a) a two-stage regression approach, and (b) a maximum moment restriction approach. We focus on the proximal causal learning setting, but our methods can be used to solve a wider class of inverse problems characterised by a Fredholm integral equation. In particular, we provide a unifying view of two-stage and moment restriction approaches for solving this problem in a nonlinear setting. We provide consistency guarantees for each algorithm, and we demonstrate these approaches achieve competitive results on synthetic data and data simulating a real-world task. In particular, our approach outperforms earlier methods that are not suited to leveraging proxy variables

    Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice

    Get PDF
    Necessity and sufficiency are the building blocks of all successful explanations. Yet despite their importance, these notions have been conceptually underdeveloped and inconsistently applied in explainable artificial intelligence (XAI), a fast-growing research area that is so far lacking in firm theoretical foundations. Building on work in logic, probability, and causality, we establish the central role of necessity and sufficiency in XAI, unifying seemingly disparate methods in a single formal framework. We provide a sound and complete algorithm for computing explanatory factors with respect to a given context, and demonstrate its flexibility and competitive performance against state of the art alternatives on various tasks

    Beyond Impossibility: Balancing Sufficiency, Separation and Accuracy

    Full text link
    Among the various aspects of algorithmic fairness studied in recent years, the tension between satisfying both \textit{sufficiency} and \textit{separation} -- e.g. the ratios of positive or negative predictive values, and false positive or false negative rates across groups -- has received much attention. Following a debate sparked by COMPAS, a criminal justice predictive system, the academic community has responded by laying out important theoretical understanding, showing that one cannot achieve both with an imperfect predictor when there is no equal distribution of labels across the groups. In this paper, we shed more light on what might be still possible beyond the impossibility -- the existence of a trade-off means we should aim to find a good balance within it. After refining the existing theoretical result, we propose an objective that aims to balance \textit{sufficiency} and \textit{separation} measures, while maintaining similar accuracy levels. We show the use of such an objective in two empirical case studies, one involving a multi-objective framework, and the other fine-tuning of a model pre-trained for accuracy. We show promising results, where better trade-offs are achieved compared to existing alternatives
    corecore