4,062 research outputs found

    The Long Valley

    Get PDF
    Pages 36-3

    Addressing failure rate uncertainties of marine energy converters

    Get PDF
    publication-status: Publishedtypes: ArticleThe interest in marine renewable energy is strong, but has not led to significant commercial-scale investment and deployment, yet. To attract investors and promote the development of a marine renewable industry a clear concept of project risk is paramount, in particular issues relating to device reliability are critical. In the public domain, reliability information is often scarce or inappropriate at this early stage of development, as little operational experience has been gained. Thus, reliability estimates are fraught with large uncertainties. This paper explores sources and magnitudes of failure rate uncertainty and demonstrates the effect on reliability estimates for a notional marine energy converter. If generic failure rate data forms the basis of a reliability assessment, reliability estimates are not robust and may significantly over- or underestimate system reliability. The Bayesian statistical framework provides a method to overcome this issue. Generic data can be updated with more specific information that could not be statistically incorporated otherwise. It is proposed that adopting such an approach at an early stage in an iterative process will lead to an improved rate of certainty

    High-precision determination of the critical exponents for the lambda-transition of 4He by improved high-temperature expansion

    Full text link
    We determine the critical exponents for the XY universality class in three dimensions, which is expected to describe the λ\lambda-transition in 4{}^4He. They are obtained from the analysis of high-temperature series computed for a two-component λϕ4\lambda\phi^4 model. The parameter λ\lambda is fixed such that the leading corrections to scaling vanish. We obtain ν=0.67166(55)\nu = 0.67166(55), γ=1.3179(11)\gamma = 1.3179(11), α=−0.0150(17)\alpha=-0.0150(17). These estimates improve previous theoretical determinations and agree with the more precise experimental results for liquid Helium.Comment: 8 pages, revte

    25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple cubic lattice

    Full text link
    25th-order high-temperature series are computed for a general nearest-neighbor three-dimensional Ising model with arbitrary potential on the simple cubic lattice. In particular, we consider three improved potentials characterized by suppressed leading scaling corrections. Critical exponents are extracted from high-temperature series specialized to improved potentials, obtaining γ=1.2373(2)\gamma=1.2373(2), ν=0.63012(16)\nu=0.63012(16), α=0.1096(5)\alpha=0.1096(5), η=0.03639(15)\eta=0.03639(15), β=0.32653(10)\beta=0.32653(10), δ=4.7893(8)\delta=4.7893(8). Moreover, biased analyses of the 25th-order series of the standard Ising model provide the estimate Δ=0.52(3)\Delta=0.52(3) for the exponent associated with the leading scaling corrections. By the same technique, we study the small-magnetization expansion of the Helmholtz free energy. The results are then applied to the construction of parametric representations of the critical equation of state, using a systematic approach based on a global stationarity condition. Accurate estimates of several universal amplitude ratios are also presented.Comment: 40 pages, 15 figure

    Extension to order β23\beta^{23} of the high-temperature expansions for the spin-1/2 Ising model on the simple-cubic and the body-centered-cubic lattices

    Get PDF
    Using a renormalized linked-cluster-expansion method, we have extended to order β23\beta^{23} the high-temperature series for the susceptibility χ\chi and the second-moment correlation length ξ\xi of the spin-1/2 Ising models on the sc and the bcc lattices. A study of these expansions yields updated direct estimates of universal parameters, such as exponents and amplitude ratios, which characterize the critical behavior of χ\chi and ξ\xi. Our best estimates for the inverse critical temperatures are βcsc=0.221654(1)\beta^{sc}_c=0.221654(1) and βcbcc=0.1573725(6)\beta^{bcc}_c=0.1573725(6). For the susceptibility exponent we get γ=1.2375(6)\gamma=1.2375(6) and for the correlation length exponent we get ν=0.6302(4)\nu=0.6302(4). The ratio of the critical amplitudes of χ\chi above and below the critical temperature is estimated to be C+/C−=4.762(8)C_+/C_-=4.762(8). The analogous ratio for ξ\xi is estimated to be f+/f−=1.963(8)f_+/f_-=1.963(8). For the correction-to-scaling amplitude ratio we obtain aξ+/aχ+=0.87(6)a^+_{\xi}/a^+_{\chi}=0.87(6).Comment: Misprints corrected, 8 pages, latex, no figure

    Critical behavior of the three-dimensional XY universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional XY universality class. We find alpha=-0.0146(8), gamma=1.3177(5), nu=0.67155(27), eta=0.0380(4), beta=0.3485(2), and delta=4.780(2). We observe a discrepancy with the most recent experimental estimate of alpha; this discrepancy calls for further theoretical and experimental investigations. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods, and high-temperature expansions. Two improved models (with suppressed leading scaling corrections) are selected by Monte Carlo computation. The critical exponents are computed from high-temperature expansions specialized to these improved models. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine the specific-heat amplitude ratio.Comment: 61 pages, 3 figures, RevTe

    Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems

    Full text link
    High-temperature series are computed for a generalized 3d3d Ising model with arbitrary potential. Two specific ``improved'' potentials (suppressing leading scaling corrections) are selected by Monte Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved potentials, achieving high accuracy; our best estimates are: γ=1.2371(4)\gamma=1.2371(4), ν=0.63002(23)\nu=0.63002(23), α=0.1099(7)\alpha=0.1099(7), η=0.0364(4)\eta=0.0364(4), β=0.32648(18)\beta=0.32648(18). By the same technique, the coefficients of the small-field expansion for the effective potential (Helmholtz free energy) are computed. These results are applied to the construction of parametric representations of the critical equation of state. A systematic approximation scheme, based on a global stationarity condition, is introduced (the lowest-order approximation reproduces the linear parametric model). This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison with other theoretical and experimental determinations of universal quantities is presented.Comment: 65 pages, 1 figure, revtex. New Monte Carlo data by Hasenbusch enabled us to improve the determination of the critical exponents and of the equation of state. The discussion of several topics was improved and the bibliography was update

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore