4,494 research outputs found
Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set
This paper presents a near-optimal distributed approximation algorithm for
the minimum-weight connected dominating set (MCDS) problem. The presented
algorithm finds an approximation in rounds,
where is the network diameter and is the number of nodes.
MCDS is a classical NP-hard problem and the achieved approximation factor
is known to be optimal up to a constant factor, unless P=NP.
Furthermore, the round complexity is known to be
optimal modulo logarithmic factors (for any approximation), following [Das
Sarma et al.---STOC'11].Comment: An extended abstract version of this result appears in the
proceedings of 41st International Colloquium on Automata, Languages, and
Programming (ICALP 2014
Continuous-variable entanglement distillation over a pure loss channel with multiple quantum scissors
Entanglement distillation is a key primitive for distributing high-quality
entanglement between remote locations. Probabilistic noiseless linear
amplification based on the quantum scissors is a candidate for entanglement
distillation from noisy continuous-variable (CV) entangled states. Being a
non-Gaussian operation, quantum scissors is challenging to analyze. We present
a derivation of the non-Gaussian state heralded by multiple quantum scissors in
a pure loss channel with two-mode squeezed vacuum input. We choose the reverse
coherent information (RCI)---a proven lower bound on the distillable
entanglement of a quantum state under one-way local operations and classical
communication (LOCC), as our figure of merit. We evaluate a Gaussian lower
bound on the RCI of the heralded state. We show that it can exceed the
unlimited two-way LOCCassisted direct transmission entanglement distillation
capacity of the pure loss channel. The optimal heralded Gaussian RCI with two
quantum scissors is found to be significantly more than that with a single
quantum scissors, albeit at the cost of decreased success probability. Our
results fortify the possibility of a quantum repeater scheme for CV quantum
states using the quantum scissors.Comment: accepted for publication in Physical Review
Achieving minimum-error discrimination of an arbitrary set of laser-light pulses
Laser light is widely used for communication and sensing applications, so the
optimal discrimination of coherent states--the quantum states of light emitted
by a laser--has immense practical importance. However, quantum mechanics
imposes a fundamental limit on how well different coher- ent states can be
distinguished, even with perfect detectors, and limits such discrimination to
have a finite minimum probability of error. While conventional optical
receivers lead to error rates well above this fundamental limit, Dolinar found
an explicit receiver design involving optical feedback and photon counting that
can achieve the minimum probability of error for discriminating any two given
coherent states. The generalization of this construction to larger sets of
coherent states has proven to be challenging, evidencing that there may be a
limitation inherent to a linear-optics-based adaptive measurement strategy. In
this Letter, we show how to achieve optimal discrimination of any set of
coherent states using a resource-efficient quantum computer. Our construction
leverages a recent result on discriminating multi-copy quantum hypotheses
(arXiv:1201.6625) and properties of coherent states. Furthermore, our
construction is reusable, composable, and applicable to designing
quantum-limited processing of coherent-state signals to optimize any metric of
choice. As illustrative examples, we analyze the performance of discriminating
a ternary alphabet, and show how the quantum circuit of a receiver designed to
discriminate a binary alphabet can be reused in discriminating multimode
hypotheses. Finally, we show our result can be used to achieve the quantum
limit on the rate of classical information transmission on a lossy optical
channel, which is known to exceed the Shannon rate of all conventional optical
receivers.Comment: 9 pages, 2 figures; v2 Minor correction
Synthesis And Characterization Of Barium Lanthanum Titanates
Ternary compounds in the system BaO—TiO2—La2O3 were prepared by the solid‐state reaction technique at temperatures between 1300° and 1400°C using precursor oxides as the starting materials. In an alternative processing technique, BaTiO3 was reacted with appropriate proportions of prefabricated lanthanum titanates at 1350°C to obtain the compounds. Two compounds were identified in the TiO2‐rich region of the system. The X‐ray powder diffraction pattern of a compound with a chemical composition BaLa2Ti3O10 (BaO·La2O3·3TiO2) is indexed on the basis of an orthorhombic unit cell with a= 7.665 x 10−1 nm, b= 28.524 x 10−1 nm, and c= 3.876 x 10−1 nm. The other compound, which has a chemical composition Ba4La8Ti17O50 (BaO·La2O3·4.25TiO2) occurs in a narrow homogeneity range within the system. The X‐ray powder diffraction pattern of the compound is indexed on the basis of an orthorhombic unit cell with a= 12.317 x 10−1 nm, b= 22.394 x 10−1 nm, and c= 3.881 x 10−1 nm. Both the compounds are compatible with BaTiO3 and form pseudobinary joins with BaTiO3 in the system BaO—TiO2—La2O3. Copyright © 1991, Wiley Blackwell. All rights reserve
- …