13 research outputs found
Temperature-Independent Cuprate Pseudogap from Planar Oxygen NMR
Planar oxygen nuclear magnetic resonance (NMR) relaxation and shift data from all cuprate superconductors available in the literature are analyzed. They reveal a temperature-independent pseudogap at the Fermi surface, which increases with decreasing doping in family-specific ways, i.e., for some materials, the pseudogap is substantial at optimal doping while for others it is nearly closed at optimal doping. The states above the pseudogap, or in its absence are similar for all cuprates and doping levels, and Fermi liquid-like. If the pseudogap is assumed exponential it can be as large as about 1500 K for the most underdoped systems, relating it to the exchange coupling. The pseudogap can vary substantially throughout a material, being the cause of cuprate inhomogeneity in terms of charge and spin, so consequences for the NMR analyses are discussed. This pseudogap appears to be in agreement with the specific heat data measured for the YBaCuO family of materials, long ago. Nuclear relaxation and shift show deviations from this scenario near Tc, possibly due to other in-gap states
Exploring the nontrivial band edge in the bulk of the topological insulators Bi_{2}Se_{3} and Bi_{2}Te_{3}
Bi_{2}Se_{3} and related compounds are prototype three-dimensional topological insulators with a single Dirac cone in the surface band structure. While the topological surface states can be characterized with surface-sensitive methods, the underlying bulk energy band inversion has not been investigated in detail. Here, a study is presented that combines density-functional theory and nuclear magnetic resonance to explore the nontrivial band edge of Bi_{2}Se_{3} and Bi_{2}Te_{3}. It is found that the topological band inversion is not a discrete reversal of the order of the valence and conduction band at the Γ point. Rather, the bands closest to the Fermi level become well mixed and spread evenly below and above the band gap, such that the characters of the valence- and conduction-band edges become indistinguishable. Beside those bands relevant for the band inversion, i.e., Bi and Se p_{z}, also Bi p_{x} and p_{y} states are involved. As a part of this mixture of states, the band inversion shows no edges in k space
Bulk Charge Ordering in the CuO2 Plane of the Cuprate Superconductor YBa2Cu3O6.9 by High-Pressure NMR
Cuprate superconductors still hold many open questions, and recently, the role of symmetry breaking electronic charge ordering resurfaced in underdoped cuprates as a phenomenon that competes with superconductivity. Here, unambiguous nuclear magnetic resonance (NMR) proof is presented for the existence of local charge ordering in nearly optimally doped YBa2Cu3O6.9, even up to room temperature. Increasing pressure and decreasing temperature leads to the highest degree of order in the sense that the two oxygen atoms of the unit cell of the CuO2 plane develop a charge difference of about 0.02 holes, and order throughout the whole crystal. At ambient conditions, a slightly smaller charge difference and a decreased order is found. Evidence from literature data suggests that this charge ordering is ubiquitous to the CuO2 plane of all cuprates. Thus, the role of charge ordering in the cuprates must be reassessed
Temperature-Independent Cuprate Pseudogap from Planar Oxygen NMR
Planar oxygen nuclear magnetic resonance (NMR) relaxation and shift data from all cuprate superconductors available in the literature are analyzed. They reveal a temperature-independent pseudogap at the Fermi surface, which increases with decreasing doping in family-specific ways, i.e., for some materials, the pseudogap is substantial at optimal doping while for others it is nearly closed at optimal doping. The states above the pseudogap, or in its absence are similar for all cuprates and doping levels, and Fermi liquid-like. If the pseudogap is assumed exponential it can be as large as about 1500 K for the most underdoped systems, relating it to the exchange coupling. The pseudogap can vary substantially throughout a material, being the cause of cuprate inhomogeneity in terms of charge and spin, so consequences for the NMR analyses are discussed. This pseudogap appears to be in agreement with the specific heat data measured for the YBaCuO family of materials, long ago. Nuclear relaxation and shift show deviations from this scenario near Tc, possibly due to other in-gap states
Temperature-Independent Cuprate Pseudogap from Planar Oxygen NMR
Planar oxygen nuclear magnetic resonance (NMR) relaxation and shift data from all cuprate superconductors available in the literature are analyzed. They reveal a temperature-independent pseudogap at the Fermi surface, which increases with decreasing doping in family-specific ways, i.e., for some materials, the pseudogap is substantial at optimal doping while for others it is nearly closed at optimal doping. The states above the pseudogap, or in its absence are similar for all cuprates and doping levels, and Fermi liquid-like. If the pseudogap is assumed exponential it can be as large as about 1500 K for the most underdoped systems, relating it to the exchange coupling. The pseudogap can vary substantially throughout a material, being the cause of cuprate inhomogeneity in terms of charge and spin, so consequences for the NMR analyses are discussed. This pseudogap appears to be in agreement with the specific heat data measured for the YBaCuO family of materials, long ago. Nuclear relaxation and shift show deviations from this scenario near Tc, possibly due to other in-gap states
Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin
Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3–x and BaSnD4/3–x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge–D) = 1.521(9) Å and d(Sn–D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2–x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si–D) = 1.641(5) Å