6 research outputs found

    Fuzzy Gain-Scheduling PID for UAV Position and Altitude Controllers

    Get PDF
    Unmanned aerial vehicle (UAV) applications have evolved to a wide range of fields in the last decade. One of the main challenges in autonomous tasks is the UAV stability during maneuvers. Thus, attitude and position control play a crucial role in stabilizing the vehicle in the desired orientation and path. Many control techniques have been developed for this. However, proportional integral derivative (PID) controllers are often used due their structure and efficiency. Despite PID’s good performance, different requirements may be present at different mission stages. The main contribution of this research work is the development of a novel strategy based on a fuzzy-gain scheduling mechanism to adjust the PID controller to stabilize both position and altitude. This control strategy must be effective, simple, and robust to uncertainties and external disturbances. The Robot Operating System (ROS) integrates the proposed system and the flight control unit. The obtained results showed that the proposed approach was successfully applied to the trajectory tracking and revealed a good performance compared to conventional PID and in the presence of noises. In the tests, the position controller was only affected when the altitude error was higher, with an error of 2% lower.publishedVersio

    Comprehensive Direct Georeferencing of Aerial Images for Unmanned Aerial Systems Applications

    Full text link
    Optical image sensors are the most common remote sensing data acquisition devices present in Unmanned Aerial Systems (UAS). In this context, assigning a location in a geographic frame of reference to the acquired image is a necessary task in the majority of the applications. This process is denominated direct georeferencing when ground control points are not used. Despite it applies simple mathematical fundamentals, the complete direct georeferencing process involves much information, such as camera sensor characteristics, mounting measurements, attitude and position of the UAS, among others. In addition, there are many rotations and translations between the different reference frames, among many other details, which makes the whole process a considerable complex operation. Another problem is that manufacturers and software tools may use different reference frames posing additional difficulty when implementing the direct georeferencing. As this information is spread among many sources, researchers may face difficulties on having a complete vision of the method. In fact, there is absolutely no paper in the literature that explain this process in a comprehensive way. In order to supply this implicit demand, this paper presents a comprehensive method for direct georeferencing of aerial images acquired by cameras mounted on UAS, where all required information, mathematical operations and implementation steps are explained in detail. Finally, in order to show the practical use of the method and to prove its accuracy, both simulated and real flights were performed, where objects of the acquired images were georeference

    Comprehensive Direct Georeferencing of Aerial Images for Unmanned Aerial Systems Applications

    Get PDF
    Optical image sensors are the most common remote sensing data acquisition devices present in Unmanned Aerial Systems (UAS). In this context, assigning a location in a geographic frame of reference to the acquired image is a necessary task in the majority of the applications. This process is denominated direct georeferencing when ground control points are not used. Despite it applies simple mathematical fundamentals, the complete direct georeferencing process involves much information, such as camera sensor characteristics, mounting measurements, attitude and position of the UAS, among others. In addition, there are many rotations and translations between the different reference frames, among many other details, which makes the whole process a considerable complex operation. Another problem is that manufacturers and software tools may use different reference frames posing additional difficulty when implementing the direct georeferencing. As this information is spread among many sources, researchers may face difficulties on having a complete vision of the method. In fact, there is absolutely no paper in the literature that explain this process in a comprehensive way. In order to supply this implicit demand, this paper presents a comprehensive method for direct georeferencing of aerial images acquired by cameras mounted on UAS, where all required information, mathematical operations and implementation steps are explained in detail. Finally, in order to show the practical use of the method and to prove its accuracy, both simulated and real flights were performed, where objects of the acquired images were georeferencedpublishedVersio

    Comprehensive Direct Georeferencing of Aerial Images for Unmanned Aerial Systems Applications

    Get PDF
    Optical image sensors are the most common remote sensing data acquisition devices present in Unmanned Aerial Systems (UAS). In this context, assigning a location in a geographic frame of reference to the acquired image is a necessary task in the majority of the applications. This process is denominated direct georeferencing when ground control points are not used. Despite it applies simple mathematical fundamentals, the complete direct georeferencing process involves much information, such as camera sensor characteristics, mounting measurements, attitude and position of the UAS, among others. In addition, there are many rotations and translations between the different reference frames, among many other details, which makes the whole process a considerable complex operation. Another problem is that manufacturers and software tools may use different reference frames posing additional difficulty when implementing the direct georeferencing. As this information is spread among many sources, researchers may face difficulties on having a complete vision of the method. In fact, there is absolutely no paper in the literature that explain this process in a comprehensive way. In order to supply this implicit demand, this paper presents a comprehensive method for direct georeferencing of aerial images acquired by cameras mounted on UAS, where all required information, mathematical operations and implementation steps are explained in detail. Finally, in order to show the practical use of the method and to prove its accuracy, both simulated and real flights were performed, where objects of the acquired images were georeferenced

    Unmanned Aerial Vehicles Motion Control with Fuzzy Tuning of Cascaded-PID Gains

    Full text link
    One of the main challenges of maneuvering an Unmanned Aerial Vehicle (UAV) to keep a stabilized flight is dealing with its fast and highly coupled nonlinear dynamics. There are several solutions in the literature, but most of them require fine-tuning of the parameters. In order to avoid the exhaustive tuning procedures, this work employs a Fuzzy Logic strategy for online tuning of the PID gains of the UAV motion controller. A Cascaded-PID scheme is proposed, in which velocity commands are calculated and sent to the flight control unit from a given target desired position (waypoint). Therefore, the flight control unit is responsible for the lower control loop. The main advantage of the proposed method is that it can be applied to any UAV without the need of its formal mathematical model. Robot Operating System (ROS) is used to integrate the proposed system and the flight control unit. The solution was evaluated through flight tests and simulations, which were conducted using Unreal Engine 4 with the Microsoft AirSim plugin. In the simulations, the proposed method is compared with the traditional Ziegler-Nichols tuning method, another Fuzzy Logic approach, and the ArduPilot built-in PID controller. The simulation results show that the proposed method, compared to the ArduPilot controller, drives the UAV to reach the desired setpoint faster. When compared to Ziegler-Nichols and another different Fuzzy Logic approach, the proposed method demonstrates to provide a faster accommodation and yield smaller errors amplitudes
    corecore