6 research outputs found
The Physics of Living Neural Networks
Improvements in technique in conjunction with an evolution of the theoretical
and conceptual approach to neuronal networks provide a new perspective on
living neurons in culture. Organization and connectivity are being measured
quantitatively along with other physical quantities such as information, and
are being related to function. In this review we first discuss some of these
advances, which enable elucidation of structural aspects. We then discuss two
recent experimental models that yield some conceptual simplicity. A
one-dimensional network enables precise quantitative comparison to analytic
models, for example of propagation and information transport. A two-dimensional
percolating network gives quantitative information on connectivity of cultured
neurons. The physical quantities that emerge as essential characteristics of
the network in vitro are propagation speeds, synaptic transmission, information
creation and capacity. Potential application to neuronal devices is discussed.Comment: PACS: 87.18.Sn, 87.19.La, 87.80.-y, 87.80.Xa, 64.60.Ak Keywords:
complex systems, neuroscience, neural networks, transport of information,
neural connectivity, percolation
http://www.weizmann.ac.il/complex/tlusty/papers/PhysRep2007.pdf
http://www.weizmann.ac.il/complex/EMoses/pdf/PhysRep-448-56.pd
Recommended from our members
Shedding light on walking in the dark: the effects of reduced lighting on the gait of older adults with a higher-level gait disorder and controls
OBJECTIVE: To study the effects of reduced lighting on the gait of older adults with a high level gait disorder (HLGD) and to compare their response to that of healthy elderly controls. METHODS: 22 patients with a HLGD and 20 age-matched healthy controls were studied under usual lighting conditions (1000 lumens) and in near darkness (5 lumens). Gait speed and gait dynamics were measured under both conditions. Cognitive function, co-morbidities, depressive symptoms, and vision were also evaluated. RESULTS: Under usual lighting conditions, patients walked more slowly, with reduced swing times, and increased stride-to-stride variability, compared to controls. When walking under near darkness conditions, both groups slowed their gait. All other measures of gait were not affected by lighting in the controls. In contrast, patients further reduced their swing times and increased their stride-to-stride variability, both stride time variability and swing time variability. The unique response of the patients was not explained by vision, mental status, co-morbidities, or the values of walking under usual lighting conditions. CONCLUSION: Walking with reduced lighting does not affect the gait of healthy elderly subjects, except for a reduction in speed. On the other hand, the gait of older adults with a HLGD becomes more variable and unsteady when they walk in near darkness, despite adapting a slow and cautious gait. Further work is needed to identify the causes of the maladaptive response among patients with a HLGD and the potential connection between this behavior and the increased fall risk observed in these patients
Recommended from our members
Effect of gait speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time respond differently
BACKGROUND: The ability to maintain a steady gait rhythm is impaired in patients with Parkinson's disease (PD). This aspect of locomotor dyscontrol, which likely reflects impaired automaticity in PD, can be quantified by measuring the stride-to-stride variability of gait timing. Previous work has shown an increase in both the variability of the stride time and swing time in PD, but the origins of these changes are not fully understood. Patients with PD also generally walk with a reduced gait speed, a potential confounder of the observed changes in variability. The purpose of the present study was to examine the relationship between walking speed and gait variability. METHODS: Stride time variability and swing time variability were measured in 36 patients with PD (Hoehn and Yahr stage 2–2.5) and 30 healthy controls who walked on a treadmill at four different speeds: 1) Comfortable walking speed (CWS), 2) 80% of CWS 3) 90% of CWS, and 4) 110% of CWS. In addition, we studied the effects of walking slowly on level ground, both with and without a walker. RESULTS: Consistent with previous findings, increased variability of stride time and swing time was observed in the patients with PD in CWS, compared to controls. In both groups, there was a small but significant association between treadmill gait speed and stride time variability such that higher speeds were associated with lower (better) values of stride time variability (p = 0.0002). In contrast, swing time variability did not change in response to changes in gait speed. Similar results were observed with walking on level ground. CONCLUSION: The present results demonstrate that swing time variability is independent of gait speed, at least over the range studied, and therefore, that it may be used as a speed-independent marker of rhythmicity and gait steadiness. Since walking speed did not affect stride time variability and swing time variability in the same way, it appears that these two aspects of gait rhythmicity are not entirely controlled by the same mechanisms. The present findings also suggest that the increased gait variability in PD is disease-related, and not simply a consequence of bradykinesia
The Co-Production of Service: Modeling Service Times in Contact Centers Using Hawkes Processes
In customer support contact centers, every service interaction involves a
messaging dialogue between a customer and an agent. Both parties depend on one
another for information and problem solving, hence this interaction defines a
co-produced service process. In this paper, we develop and compare new
stochastic models for service co-production in contact centers. A key
observation is that this service interaction features cross- and self-exciting
dynamics within each conversation. The cross-excitation stems from the two
parties responding to one another, and the self-excitation captures one party
sending follow-ups to their own prior message. Hence, messages beget messages,
and we capture this phenomenon by introducing Hawkes point process models of
the conversational services, which depend on the conversation's history, on the
customer-agent relationships, and on the state of the system.
To evaluate our service co-production models, we apply them to an industry
contact center dataset containing nearly 5 million messages. We show that the
Hawkes models better represent the service dynamics than classic Poisson and
phase-type models do. Indeed, we find that service interactions are
characterized by strong agent-customer dependency and by the centrality of the
process's cross- and self-excitation attributes. Finally, we use the proposed
models to improve upon popular routing algorithms used in contact centers. We
show how dynamic routing based on Hawkes process predictions outperforms
well-known concurrency-based routing rules. Large data-driven simulation
experiments show that this Hawkes-based routing significantly reduces customer
waiting time, demonstrating how these history-dependent stochastic models can
improve operational decision making in practice