273 research outputs found

    Coalgebraic Geometric Logic: Basic Theory

    Get PDF
    Using the theory of coalgebra, we introduce a uniform framework for adding modalities to the language of propositional geometric logic. Models for this logic are based on coalgebras for an endofunctor on some full subcategory of the category of topological spaces and continuous functions. We investigate derivation systems, soundness and completeness for such geometric modal logics, and we we specify a method of lifting an endofunctor on Set, accompanied by a collection of predicate liftings, to an endofunctor on the category of topological spaces, again accompanied by a collection of (open) predicate liftings. Furthermore, we compare the notions of modal equivalence, behavioural equivalence and bisimulation on the resulting class of models, and we provide a final object for the corresponding category

    Goldblatt-Thomason Theorems for Modal Intuitionistic Logics

    Full text link
    We prove Goldblatt-Thomason theorems for frames and models of a wide variety of modal intuitionistic logics, including ones studied by Wolter and Zakharyaschev, Goldblatt, Fischer Servi, and Plotkin and Sterling. We use the framework of dialgebraic logic to describe most of these logics and derive results in a uniform way

    Modal meet-implication logic

    Get PDF
    We extend the meet-implication fragment of propositional intuitionistic logic with a meet-preserving modality. We give semantics based on semilattices and a duality result with a suitable notion of descriptive frame. As a consequence we obtain completeness and identify a common (modal) fragment of a large class of modal intuitionistic logics. We recognise this logic as a dialgebraic logic, and as a consequence obtain expressivity-somewhere-else. Within the dialgebraic framework, we then investigate the extension of the meet-implication fragment of propositional intuitionistic logic with a monotone modality and prove completeness and expressivity-somewhere-else for it

    Modal Logics for Mobile Processes Revisited

    Get PDF
    We revisit the logical characterisations of various bisimilarity relations for the finite fragment of the ?-calculus. Our starting point is the early and the late bisimilarity, first defined in the seminal work of Milner, Parrow and Walker, who also proved their characterisations in fragments of a modal logic (which we refer to as the MPW logic). Two important refinements of early and late bisimilarity, called open and quasi-open bisimilarity, respectively, were subsequently proposed by Sangiorgi and Walker. Horne, et. al., showed that open and quasi-bisimilarity are characterised by intuitionistic modal logics: OM (for open bisimilarity) and FM (for quasi-open bisimilarity). In this work, we attempt to unify the logical characterisations of these bisimilarity relations, showing that they can be characterised by different sublogics of a unifying logic. A key insight to this unification derives from a reformulation of the four bisimilarity relations (early, late, open and quasi-open) that uses an explicit name context, and an observation that these relations can be distinguished by the relative scoping of names and their instantiations in the name context. This name context and name substitution then give rise to an accessibility relation in the underlying Kripke semantics of our logic, that is captured logically by an S4-like modal operator. We then show that the MPW, the OM and the FM logics can be embedded into fragments of our unifying classical modal logic. In the case of OM and FM, the embedding uses the fact that intuitionistic implication can be encoded in modal logic S4

    Dualities in modal logic

    Get PDF
    Categorical dualities are an important tool in the study of (modal) logics. They offer conceptual understanding and enable the transfer of results between the different semantics of a logic. As such, they play a central role in the proofs of completeness theorems, Sahlqvist theorems and Goldblatt-Thomason theorems. A common way to obtain dualities is by extending existing ones. For example, Jonsson-Tarski duality is an extension of Stone duality. A convenient formalism to carry out such extensions is given by the dual categorical notions of algebras and coalgebras. Intuitively, these allow one to isolate the new part of a duality from the existing part. In this thesis we will derive both existing and new dualities via this route, and we show how to use the dualities to investigate logics. However, not all (modal logical) paradigms fit the (co)algebraic perspective. In particular, modal intuitionistic logics do not enjoy a coalgebraic treatment, and there is a general lack of duality results for them. To remedy this, we use a generalisation of both algebras and coalgebras called dialgebras. Guided by the research field of coalgebraic logic, we introduce the framework of dialgebraic logic. We show how a large class of modal intuitionistic logics can be modelled as dialgebraic logics and we prove dualities for them. We use the dialgebraic framework to prove general completeness, Hennessy-Milner, representation and Goldblatt-Thomason theorems, and instantiate this to a wide variety of modal intuitionistic logics. Additionally, we use the dialgebraic perspective to investigate modal extensions of the meet-implication fragment of intuitionistic logic. We instantiate general dialgebraic results, and describe how modal meet-implication logics relate to modal intuitionistic logics

    Positive Modal Logic Beyond Distributivity

    Full text link
    We develop a duality for (modal) lattices that need not be distributive, and use it to study positive (modal) logic beyond distributivity, which we call weak positive (modal) logic. This duality builds on the Hofmann, Mislove and Stralka duality for meet-semilattices. We introduce the notion of Π1\Pi_1-persistence and show that every weak positive modal logic is Π1\Pi_1-persistent. This approach leads to a new relational semantics for weak positive modal logic, for which we prove an analogue of Sahlqvist correspondence result

    Modal meet-implication logic

    Get PDF
    We extend the meet-implication fragment of propositional intuitionistic logic with a meet-preserving modality. We give semantics based on semilattices and a duality result with a suitable notion of descriptive frame. As a consequence we obtain completeness and identify a common (modal) fragment of a large class of modal intuitionistic logics. We recognise this logic as a dialgebraic logic, and as a consequence obtain expressivity-somewhere-else. Within the dialgebraic framework, we then investigate the extension of the meet-implication fragment of propositional intuitionistic logic with a monotone modality and prove completeness and expressivity-somewhere-else for it

    How user knowledge of psychotropic drug withdrawal resulted in the development of person-specific tapering medication

    Get PDF
    Coming off psychotropic drugs can cause physical as well as mental withdrawal, resulting in failed withdrawal attempts and unnecessary long-term drug use. The first reports about withdrawal appeared in the 1950s, but although patients have been complaining about psychotropic withdrawal problems for decades, the first tentative acknowledgement by psychiatry only came in 1997 with the introduction of the 'antidepressant-discontinuation syndrome'. It was not until 2019 that the UK Royal College of Psychiatrists, for the first time, acknowledged that withdrawal can be severe and persistent. Given the lack of a systematic professional response, over the years, patients who were experiencing withdrawal started to work out practical ways to safely come off medications themselves. This resulted in an experience-based knowledge base about withdrawal which ultimately, in The Netherlands, gave rise to the development of person-specific tapering medication (so-called tapering strips). Tapering medication enables doctors, for the first time, to flexibly prescribe and adapt the medication required for responsible and person-specific tapering, based on shared decision making and in full agreement with recommendations in existing guidelines. Looking back, it is obvious that the simple practical solution of tapering strips could have been introduced much earlier, and that the traditional academic strategy of comparisons from randomised trials is not the logical first step to help individual patients. While randomised controlled trials (RCTs) are the gold standard for evaluating interventions, they are unable to accommodate the heterogeneity of individual responses. Thus, a more individualised approach, building on RCT knowledge, is required. We propose a roadmap for a more productive way forward, in which patients and academic psychiatry work together to improve the recognition and person-specific management of psychotropic drug withdrawal
    • …
    corecore