885 research outputs found

    Method for Assessing Potential in Distribution Logistics

    Get PDF
    In addition to the production, which is already frequently optimized, improving the distribution logistics also opens up tremendous potential for increasing an enterprise’s competitiveness. Here too though, numerous interactions need to be taken into account, enterprises thus need to be able to identify and weigh between different potentials for economically efficient optimizations. In order to be able to assess potentials, enterprises require a suitable method. This paper first briefly presents the need for this research before introducing the procedure that will be used to develop an appropriate method that not only considers interactions but is also quickly and easily implemented

    A threshold heating rate for single-stage heat treatments in glass-ceramics containing seed formers

    Get PDF
    The development of glass-ceramic materials is often achieved using an elementary microstructural strategy that splits the tasks of seed formation and functionality between two types of crystals. This strategy requires customized time-temperature ceramization protocols, which have been so far implemented using empirical parameters. Here, a more fundamental approach is proposed: the extent of overlap Oe between seed formation and volume crystallization is evaluated by calorimetric and dilatometric measurements, targeting the computation of a threshold heating rate qt for effective single-stage heat treatments. The applicability of this novel parameter is tested in TiO2-doped lithium magnesium aluminosilicate glass-ceramics, whose seed formation stage is thoroughly characterized by Raman spectroscopy and STEM. High-temperature X-ray diffraction demonstrates that insufficient seeding results in potentially weaker performances of the final products, due to large sizes and silica deficiency of the functional quartz solid solution crystals

    Subsumption architecture for enabling strategic coordination of robot swarms in a gaming scenario

    Get PDF
    The field of swarm robotics breaks away from traditional research by maximizing the performance of a group - swarm - of limited robots instead of optimizing the intelligence of a single robot. Similar to current-generation strategy video games, the player controls groups of units - squads - instead of the individual participants. These individuals are rather unintelligent robots, capable of little more than navigating and using their weapons. However, clever control of the squads of autonomous robots by the game players can make for intense, strategic matches. The gaming framework presented in this article provides players with strategic coordination of robot squads. The developed swarm intelligence techniques break up complex squad commands into several commands for each robot using robot formations and path finding while avoiding obstacles. These algorithms are validated through a 'Capture the Flag' gaming scenario where a complex squad command is split up into several robot commands in a matter of milliseconds

    Vinylcyclopropane [3+2] cycloaddition with acetylenic sulfones based on visible light photocatalysis

    Get PDF
    Abstract: The first intermolecular visible light [3+2] cycloaddition reaction performed on a meta photocycloadduct employing acetylenic sulfones is described. The developed methodology exploits the advantages of combining UV and visible-light in a two-step sequence that provides a photogenerated cyclopropane which, through a strain-release process, generates a new cyclopentane ring while significantly increasing the molecular complexity. Mechanistic studies and DFT calculations indicate an energy transfer pathway for the visible light-driven reaction step. This strategy could be extended to simpler vinylcyclopropanes

    Excitation and relaxation in atom-cluster collisions

    Get PDF
    Electronic and vibrational degrees of freedom in atom-cluster collisions are treated simultaneously and self-consistently by combining time-dependent density functional theory with classical molecular dynamics. The gradual change of the excitation mechanisms (electronic and vibrational) as well as the related relaxation phenomena (phase transitions and fragmentation) are studied in a common framework as a function of the impact energy (eV...MeV). Cluster "transparency" characterized by practically undisturbed atom-cluster penetration is predicted to be an important reaction mechanism within a particular window of impact energies.Comment: RevTeX (4 pages, 4 figures included with epsf

    Short-term plasticity of neuro-auditory processing induced by musical active listening training

    Get PDF
    Although there is strong evidence for the positive effects of musical training on auditory perception, processing, and training-induced neuroplasticity, there is still little knowledge on the auditory and neurophysiological short-term plasticity through listening training. In a sample of 37 adolescents (20 musicians and 17 nonmusicians) that was compared to a control group matched for age, gender, and musical experience, we conducted a 2-week active listening training (AULOS: Active IndividUalized Listening OptimizationS). Using magnetoencephalography and psychoacoustic tests, the short-term plasticity of auditory evoked fields and auditory skills were examined in a pre-post design, adapted to the individual neuro-auditory profiles. We found bilateral, but more pronounced plastic changes in the right auditory cortex. Moreover, we observed synchronization of the auditory evoked P1, N1, and P2 responses and threefold larger amplitudes of the late P2 response, similar to the reported effects of musical long-term training. Auditory skills and thresholds benefited largely from the AULOS training. Remarkably, after training, the mean thresholds improved by 12 dB for bone conduction and by 3–4 dB for air conduction. Thus, our findings indicate a strong positive influence of active listening training on neural auditory processing and perception in adolescence, when the auditory system is still developing

    Temperature-dependent rate coefficients for the reactions of the hydroxyl radical with the atmospheric biogenics isoprene, alpha-pinene and delta-3-carene

    Get PDF
    Pulsed laser methods for OH generation and detection were used to study atmospheric degradation reactions for three important biogenic gases: OHCisoprene (Reaction R1), OH+α-pinene (Reaction R2) and OH+Δ- 3-carene (Reaction R3). Gas-phase rate coefficients were characterized by non-Arrhenius kinetics for all three reactions. For (R1), k1 (241-356 K)= (1:93±0:08)× 10-11 exp{(466±12)/T} cm3 molecule-1 s-1 was determined, with a room temperature value of k1 (297 K)= (9:3± 0:4)×10-11 cm3 molecule-1 s-1, independent of bath-gas pressure (5-200 Torr) and composition (MDN2 or air). Accuracy and precision were enhanced by online optical monitoring of isoprene, with absolute concentrations obtained via an absorption cross section, αisoprene = (1:28±0:06)× 10-17 cm2 molecule-1 at λ = 184:95 nm, determined in this work. These results indicate that significant discrepancies between previous absolute and relative-rate determinations of k1 result in part from σ values used to derive the isoprene concentration in high-precision absolute determinations. Similar methods were used to determine rate coefficients (in 10-11 cm3 molecule-1 s-1/ for (R2)-(R3): k2 (238-357 K)= (1:83±0:04) ×exp{(330±6)/T } and k3 (235-357 K)= (2:48±0:14) ×exp{(357±17)/T }. This is the first temperature-dependent dataset for (R3) and enables the calculation of reliable atmospheric lifetimes with respect to OH removal for e.g. boreal forest springtime conditions. Room temperature values of k2 (296 K)= (5:4±0:2) ×10-11 cm3 molecule-1 s-1 and k3 (297 K)= (8:1±0:3)×10-11 cm3 molecule-1 s-1 were independent of bathgas pressure (7-200 Torr, N2 or air) and in good agreement with previously reported values. In the course of this work, 184.95 nm absorption cross sections were determined: σ = (1:54±0:08) ×10-17 cm2 molecule-1 for α-pinene and (2:40±0:12)×10-17 cm2 molecule-1 for 1-3-carene

    Southern Ocean food-webs and climate change: A short review and future directions

    Get PDF
    Food-webs are a critical feature of ecosystems and help us understand how communities will respond to climate change. The Southern Ocean is facing rapid and accelerating changes due to climate change. Though having evolved in an isolated and somewhat extreme environment, Southern Ocean biodiversity and food-webs are among the most vulnerable. Here, we review 1) current knowledge on Southern Ocean food-webs; 2) methods to study food-webs; 3) assessment of current and future impacts of climate change on Southern Ocean food-webs; 4) knowledge gaps; and 5) the role of Early Career Researchers (ECRs) in future studies. Most knowledge on Southern Ocean food-webs come from the pelagic environment, both at macro- and microbial levels. Modelling and diet studies of individual species are major contributors to the food-web knowledge. These studies revealed a short food-web, predominantly sustained by Antarctic Krill (Euphausia superba). Additionally, alternative pathways exist, involving other krill species, fish, and squid, which play equally important roles in connecting primary producers with top predators. Advantages and disadvantages of several techniques used to study Southern Ocean food-webs were identified, from the classical analyses of stomach contents, scats, or boluses to the most recent approaches such as metabarcoding and trophic-biomarkers. Observations show that climate change can impact the food-web in different ways. As an example, changes to smaller phytoplankton species can lengthen the food-web, increasing assimilation losses and/or changing nutrient cycles. Future studies need to focus on the benthic-dominated food-webs and the benthopelagic coupling. Furthermore, research during the winter season and below the ice-shelves is needed as these areas may play a crucial role in the functioning of this ecosystem. ECRs can play a significant role in advancing the study of Southern Ocean food-webs due to their willingness for interdisciplinary collaboration and proficiency in employing various methodologies, contributing to the construction of high-resolution food-webs.</jats:p

    The Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release in the Absence of Caspase-1 Protease Activity.

    Get PDF
    Inflammasomes activate the protease caspase-1, which cleaves interleukin-1β and interleukin-18 to generate the mature cytokines and controls their secretion and a form of inflammatory cell death called pyroptosis. By generating mice expressing enzymatically inactive caspase-1 &lt;sup&gt;C284A&lt;/sup&gt; , we provide genetic evidence that caspase-1 protease activity is required for canonical IL-1 secretion, pyroptosis, and inflammasome-mediated immunity. In caspase-1-deficient cells, caspase-8 can be activated at the inflammasome. Using mice either lacking the pyroptosis effector gasdermin D (GSDMD) or expressing caspase-1 &lt;sup&gt;C284A&lt;/sup&gt; , we found that GSDMD-dependent pyroptosis prevented caspase-8 activation at the inflammasome. In the absence of GSDMD-dependent pyroptosis, the inflammasome engaged a delayed, alternative form of lytic cell death that was accompanied by the release of large amounts of mature IL-1 and contributed to host protection. Features of this cell death modality distinguished it from apoptosis, suggesting it may represent a distinct form of pro-inflammatory regulated necrosis
    corecore