95 research outputs found

    Global fixed point proof of time-dependent density-functional theory

    Full text link
    We reformulate and generalize the uniqueness and existence proofs of time-dependent density-functional theory. The central idea is to restate the fundamental one-to-one correspondence between densities and potentials as a global fixed point question for potentials on a given time-interval. We show that the unique fixed point, i.e. the unique potential generating a given density, is reached as the limiting point of an iterative procedure. The one-to-one correspondence between densities and potentials is a straightforward result provided that the response function of the divergence of the internal forces is bounded. The existence, i.e. the v-representability of a density, can be proven as well provided that the operator norms of the response functions of the members of the iterative sequence of potentials have an upper bound. The densities under consideration have second time-derivatives that are required to satisfy a condition slightly weaker than being square-integrable. This approach avoids the usual restrictions of Taylor-expandability in time of the uniqueness theorem by Runge and Gross [Phys.Rev.Lett.52, 997 (1984)] and of the existence theorem by van Leeuwen [Phys.Rev.Lett. 82, 3863 (1999)]. Owing to its generality, the proof not only answers basic questions in density-functional theory but also has potential implications in other fields of physics.Comment: 4 pages, 1 figur

    The (C-H) bond dissociation energy in the methyl group of toluene

    Get PDF
    A, kinetic study of the pyrolysis of toluene by a flow technique has been made, and assuming Szwarc\u27s mechanism, two activation energies (78.3 and 84 kcal/mole depending on the temperature range used) have been derived for the dissociation of the (C-H) bond in the methyl group of toluene. The lower value agrees quite well with Szwarc\u27s, and the higher value turns out to be approximately the average of 77.5 and 89.9. The results of this research suggest 84 kcal/mole as the upper limit for the activation energy

    Optical microsphere resonators: optimal coupling to high-Q whispering gallery modes

    Full text link
    A general model is presented for coupling of high-QQ whispering-gallery modes in optical microsphere resonators with coupler devices possessing discrete and continuous spectrum of propagating modes. By contrast to conventional high-Q optical cavities, in microspheres independence of high intrinsic quality-factor and controllable parameters of coupling via evanescent field offer variety of regimes earlier available in RF devices. The theory is applied to the earlier-reported data on different types of couplers to microsphere resonators and complemented by experimental demonstration of enhanced coupling efficiency (about 80%) and variable loading regimes with Q>10^8 fused silica microspheres.Comment: 14 pages, 4 figure

    Density-potential mappings in quantum dynamics

    Full text link
    In a recent letter [Europhys. Lett. 95, 13001 (2011)] the question of whether the density of a time-dependent quantum system determines its external potential was reformulated as a fixed point problem. This idea was used to generalize the existence and uniqueness theorems underlying time-dependent density functional theory. In this work we extend this proof to allow for more general norms and provide a numerical implementation of the fixed-point iteration scheme. We focus on the one-dimensional case as it allows for a more in-depth analysis using singular Sturm-Liouville theory and at the same time provides an easy visualization of the numerical applications in space and time. We give an explicit relation between the boundary conditions on the density and the convergence properties of the fixed-point procedure via the spectral properties of the associated Sturm-Liouville operator. We show precisely under which conditions discrete and continuous spectra arise and give explicit examples. These conditions are then used to show that in the most physically relevant cases the fixed point procedure converges. This is further demonstrated with an example.Comment: 20 pages, 8 figures, 3 table

    Biosignal and medical image processing. Third edition

    No full text
    Boca Raton, F

    The (C-H) bond dissociation energy in the methyl group of toluene

    Get PDF
    A, kinetic study of the pyrolysis of toluene by a flow technique has been made, and assuming Szwarc's mechanism, two activation energies (78.3 and 84 kcal/mole depending on the temperature range used) have been derived for the dissociation of the (C-H) bond in the methyl group of toluene. The lower value agrees quite well with Szwarc's, and the higher value turns out to be approximately the average of 77.5 and 89.9. The results of this research suggest 84 kcal/mole as the upper limit for the activation energy.</p
    corecore