2,961 research outputs found
Recommended from our members
Dust, Ice, and Gas in Time (DIGIT) Herschel Observations of GSS30-IRS1 in Ophiuchus
As a part of the "Dust, Ice, and Gas In Time" (DIGIT) key program on Herschel, we observed GSS30-IRS1, a Class I protostar located in Ophiuchus (d = 120 pc), with Herschel/Photodetector Array Camera and Spectrometer. More than 70 lines were detected within a wavelength range from 50 to 200 mu m, including CO, H2O, OH, and two atomic [O I] lines at 63 and 145 mu m. The [C II] line, known as a tracer of externally heated gas by the interstellar radiation field (ISRF), is also detected at 158 mu m. All lines, except [O I] and [C II], are detected only at the central spaxel of 9 ''.4 x 9 ''.4. The [O I] emissions are extended along a NE-SW orientation, and the [C II] line is detected over all spaxels, indicative of an external photodissociation region. The total [C II] intensity around GSS30 reveals that the far-ultraviolet radiation field is in the range of 3 to 20 G(0), where G(0) is in units of the Habing Field, 1.6 x 10(-3) erg cm(-2) s(-1). This enhanced external radiation field heats the envelope of GSS30-IRS1, causing the continuum emission to be extended, unlike the molecular emission. The best-fit continuum model of GSS30-IRS1 with the physical structure including flared disk, envelope, and outflow shows that the internal luminosity is 10 L-circle dot, and the region is externally heated by a radiation field enhanced by a factor of 130 compared to the standard local ISRF.NASANational Research Foundation of Korea (NRF) - Ministry of Education of the Korean government NRF-2012R1A1A2044689National Research Foundation (NRF) - Ministry of Education of KoreaAstronom
The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models
We use Herschel spectrophotometry of BHR71, an embedded Class 0 protostar, to
provide new constraints on its physical properties. We detect 645 (non-unique)
spectral lines amongst all spatial pixels. At least 61 different spectral lines
originate from the central region. A CO rotational diagram analysis shows four
excitation temperature components, 43 K, 197 K, 397 K, and 1057 K. Low-J CO
lines trace the outflow while the high-J CO lines are centered on the infrared
source. The low-excitation emission lines of H2O trace the large-scale outflow,
while the high-excitation emission lines trace a small-scale distribution
around the equatorial plane. We model the envelope structure using the dust
radiative transfer code, Hyperion, incorporating rotational collapse, an outer
static envelope, outflow cavity, and disk. The evolution of a rotating
collapsing envelope can be constrained by the far-infrared/millimeter SED along
with the azimuthally-averaged radial intensity profile, and the structure of
the outflow cavity plays a critical role at shorter wavelengths. Emission at
20-40 um requires a cavity with a constant-density inner region and a power-law
density outer region. The best fit model has an envelope mass of 19 solar mass
inside a radius of 0.315 pc and a central luminosity of 18.8 solar luminosity.
The time since collapse began is 24630-44000 yr, most likely around 36000 yr.
The corresponding mass infall rate in the envelope (1.2x10 solar mass
per year) is comparable to the stellar mass accretion rate, while the mass loss
rate estimated from the CO outflow is 20% of the stellar mass accretion rate.
We find no evidence for episodic accretion.Comment: Accepted for publication in ApJ. 33 pages; 34 figures; 4 table
Herschel Observations and Updated Spectral Energy Distributions of Five Sunlike Stars with Debris Disks
Observations from the Herschel Space Observatory have more than doubled the
number of wide debris disks orbiting Sunlike stars to include over 30 systems
with R > 100 AU. Here we present new Herschel PACS and re-analyzed Spitzer MIPS
photometry of five Sunlike stars with wide debris disks, from Kuiper belt size
to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular
extent of >14" along the major axis, and the disks of HD 33636, HD 50554, and
HD 52265 are extended beyond the PACS PSF size (50% of energy enclosed within
radius 4.23"). HD 105211 also has a 24-micron infrared excess that was
previously overlooked because of a poorly constrained photospheric model.
Archival Spitzer IRS observations indicate that the disks have small grains of
minimum radius ~3 microns, though the minimum grain gradius is larger than the
radiation pressure blowout size in all systems. If modeled as
single-temperature blackbodies, the disk temperatures would all be <60 K. Our
radiative transfer models predict actual disk radii approximately twice the
radius of model blackbody disks. We find that the Herschel photometry traces
dust near the source population of planetesimals. The disk luminosities are in
the range 0.00002 <= L/L* <= 0.0002, consistent with collisions in icy
planetesimal belts stirred by Pluto-size dwarf planets.Comment: Accepted for publication in ApJ. 18 pages, including 10 figures and 3
table
Warm gas towards young stellar objects in Corona Australis - Herschel/PACS observations from the DIGIT key programme
The effects of external irradiation on the chemistry and physics in the
protostellar envelope around low-mass young stellar objects are poorly
understood. The Corona Australis star-forming region contains the R CrA dark
cloud, comprising several low-mass protostellar cores irradiated by an
intermediate-mass young star. We study the effects on the warm gas and dust in
a group of low-mass young stellar objects from the irradiation by the young
luminous Herbig Be star R CrA. Herschel/PACS far-infrared datacubes of two
low-mass star-forming regions in the R CrA dark cloud are presented. The
distribution of CO, OH, H2O, [C II], [O I], and continuum emission is
investigated. We have developed a deconvolution algorithm which we use to
deconvolve the maps, separating the point-source emission from the extended
emission. We also construct rotational diagrams of the molecular species. By
deconvolution of the Herschel data, we find large-scale (several thousand AU)
dust continuum and spectral line emission not associated with the point
sources. Similar rotational temperatures are found for the warm CO (
K), hot CO ( K), OH ( K), and H2O ( K) emission,
respectively, in the point sources and the extended emission. The rotational
temperatures are also similar to what is found in other more isolated cores.
The extended dust continuum emission is found in two ridges similar in extent
and temperature to molecular mm emission, indicative of external heating from
the Herbig Be star R CrA. Our results show that a nearby luminous star does not
increase the molecular excitation temperatures in the warm gas around a young
stellar object (YSO). However, the emission from photodissociation products of
H2O, such as OH and O, is enhanced in the warm gas associated with these
protostars and their surroundings compared to similar objects not suffering
from external irradiation.Comment: 37 pages, accepted for publication in A&
GGD 37: An Extreme Protostellar Outflow
We present the first Spitzer-IRS spectral maps of the Herbig-Haro flow GGD 37 detected in lines of [Ne III], [O IV], [Ar III], and [Ne v]. The detection of extended [O IV] (55 eV) and some extended emission in [Ne v] (97 eV) indicates a shock temperature in excess of 100,000 K, in agreement with X-ray observations, and a shock speed in excess of 200 km s(-1). The presence of an extended photoionization or collisional ionization region indicates that GGD 37 is a highly unusual protostellar outflow.Jet Propulsion Laboratory, under NASA 1407NASA 1257184Jet Propulsion Laboratory (JPL) 960803University of Rochester 31419-5714Astronom
- …