273 research outputs found

    TaskInsight: Understanding Task Schedules Effects on Memory and Performance

    Get PDF
    Recent scheduling heuristics for task-based applications have managed to improve their by taking into account memory-related properties such as data locality and cache sharing. However, there is still a general lack of tools that can provide insights into why, and where, different schedulers improve memory behavior, and how this is related to the applications' performance. To address this, we present TaskInsight, a technique to characterize the memory behavior of different task schedulers through the analysis of data reuse between tasks. TaskInsight provides high-level, quantitative information that can be correlated with tasks' performance variation over time to understand data reuse through the caches due to scheduling choices. TaskInsight is useful to diagnose and identify which scheduling decisions affected performance, when were they taken, and why the performance changed, both in single and multi-threaded executions. We demonstrate how TaskInsight can diagnose examples where poor scheduling caused over 10% difference in performance for tasks of the same type, due to changes in the tasks' data reuse through the private and shared caches, in single and multi-threaded executions of the same application. This flexible insight is key for optimization in many contexts, including data locality, throughput, memory footprint or even energy efficiency.We thank the reviewers for their feedback. This work was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research project FFL12-0051 and carried out within the Linnaeus Centre of Excellence UPMARC, Uppsala Programming for Multicore Architectures Research Center. This paper was also published with the support of the HiPEAC network that received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 687698.Peer ReviewedPostprint (published version

    Cavity cooling of a levitated nanosphere by coherent scattering

    Full text link
    We report three-dimensional cooling of a levitated nanoparticle inside an optical cavity. The cooling mechanism is provided by cavity-enhanced coherent scattering off an optical tweezer. The observed 3D dynamics and cooling rates are as theoretically expected from the presence of both linear and quadratic terms in the interaction between the particle motion and the cavity field. By achieving nanometer-level control over the particle location we optimize the position-dependent coupling and demonstrate axial cooling by two orders of magnitude at background pressures as high as 6×10−26\times10^{-2} mbar. We also estimate a significant (>40> 40 dB) suppression of laser phase noise, and hence of residual heating, which is a specific feature of the coherent scattering scheme. The observed performance implies that quantum ground state cavity cooling of levitated nanoparticles can be achieved for background pressures below 10−710^{-7} mbar

    Cavity cooling of an optically levitated nanoparticle

    Get PDF
    The ability to trap and to manipulate individual atoms is at the heart of current implementations of quantum simulations, quantum computing, and long-distance quantum communication. Controlling the motion of larger particles opens up yet new avenues for quantum science, both for the study of fundamental quantum phenomena in the context of matter wave interference, and for new sensing and transduction applications in the context of quantum optomechanics. Specifically, it has been suggested that cavity cooling of a single nanoparticle in high vacuum allows for the generation of quantum states of motion in a room-temperature environment as well as for unprecedented force sensitivity. Here, we take the first steps into this regime. We demonstrate cavity cooling of an optically levitated nanoparticle consisting of approximately 10e9 atoms. The particle is trapped at modest vacuum levels of a few millibar in the standing-wave field of an optical cavity and is cooled through coherent scattering into the modes of the same cavity. We estimate that our cooling rates are sufficient for ground-state cooling, provided that optical trapping at a vacuum level of 10e-7 millibar can be realized in the future, e.g., by employing additional active-feedback schemes to stabilize the optical trap in three dimensions. This paves the way for a new light-matter interface enabling room-temperature quantum experiments with mesoscopic mechanical systems.Comment: 14 pages, 6 figure

    Non-destructive Three-dimensional Imaging of Artificially Degraded CdS Paints by Pump-probe Microscopy

    Full text link
    Cadmium sulfide (CdS) pigments have degraded in several well-known paintings, but the mechanisms of degradation have yet to be fully understood. Traditional non-destructive analysis techniques primarily focus on macroscopic degradation, whereas microscopic information is typically obtained with invasive techniques that require sample removal. Here, we demonstrate the use of pump-probe microscopy to nondestructively visualize the three-dimensional structure and degradation progress of CdS pigments in oil paints. CdS pigments, reproduced following historical synthesis methods, were artificially aged by exposure to high relative humidity (RH) and ultraviolet (UV) light. Pump-probe microscopy was applied to track the degradation progress in single grains, and volumetric imaging revealed early CdS degradation of small particles and on the surface of large particles. This indicates that the particle dimension influences the extent and evolution of degradation of historical CdS. In addition, the pump-probe signal decrease in degraded CdS is observable before visible changes to the eye, demonstrating that pump-probe microscopy is a promising tool to detect early-stage degradation in artworks. The observed degradation by pump-probe microscopy occurred through the conversion from CdS into CdSO4.xH2O, verified by both FTIR (Fourier-transform infrared) and XPS (X-ray photoelectron spectroscopy) experiment

    Nonequilibrium control of thermal and mechanical changes in a levitated system

    Get PDF
    Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small nonequilibrium systems. While work and heat are equally important forms of energy exchange, fluctuation relations have not been experimentally assessed for the generic situation of simultaneous mechanical and thermal changes. Thermal driving is indeed generally slow and more difficult to realize than mechanical driving. We here use feedback cooling techniques to implement fast and controlled temperature variations of an underdamped levitated microparticle that are one order of magnitude faster than the equilibration time. Combining mechanical and thermal control, we verify the validity of a fluctuation theorem that accounts for both contributions, well beyond the range of linear response theory. Our system allows the investigation of general far-from-equilibrium processes in microscopic systems that involve fast mechanical and thermal changes at the same time
    • …
    corecore