9 research outputs found

    Euclid preparation: XXX. Performance assessment of the NISP red grism through spectroscopic simulations for the wide and deep surveys

    Get PDF
    This work focusses on the pilot run of a simulation campaign aimed at investigating the spectroscopic capabilities of the Euclid Near-Infrared Spectrometer and Photometer (NISP), in terms of continuum and emission line detection in the context of galaxy evolutionary studies. To this purpose, we constructed, emulated, and analysed the spectra of 4992 star-forming galaxies at 0:3 ≄ z ≄ 2:5 using the NISP pixel-level simulator. We built the spectral library starting from public multi-wavelength galaxy catalogues, with value-added information on spectral energy distribution (SED) fitting results, and stellar population templates from Bruzual & Charlot (2003, MNRAS, 344, 1000). Rest-frame optical and near-IR nebular emission lines were included using empirical and theoretical relations. Dust attenuation was treated using the Calzetti extinction law accounting for the differential attenuation in line-emitting regions with respect to the stellar continuum. The NISP simulator was configured including instrumental and astrophysical sources of noise such as the dark current, read-out noise, zodiacal background, and out-of-field stray light. In this preliminary study, we avoided contamination due to the overlap of the slitless spectra. For this purpose, we located the galaxies on a grid and simulated only the first order spectra.We inferred the 3.5ÎŽ NISP red grism spectroscopic detection limit of the continuum measured in the H band for star-forming galaxies with a median disk half-light radius of 0: 004 at magnitude H = 19:5 = 0:2ABmag for the Euclid Wide Survey and at H = 20:8 = 0:6ABmag for the Euclid Deep Survey. We found a very good agreement with the red grism emission line detection limit requirement for the Wide and Deep surveys. We characterised the effect of the galaxy shape on the detection capability of the red grism and highlighted the degradation of the quality of the extracted spectra as the disk size increased. In particular, we found that the extracted emission line signal-to-noise ratio (S/N) drops by 45% when the disk size ranges from 0: 0025 to 100. These trends lead to a correlation between the emission line S/N and the stellar mass of the galaxy and we demonstrate the effect in a stacking analysis unveiling emission lines otherwise too faint to detect

    Euclid preparation: XVII. Cosmic Dawn Survey: Spitzer Space Telescope observations of the Euclid deep fields and calibration fields

    Get PDF
    We present a new infrared survey covering the three Euclid deep fields and four other Euclid calibration fields using Spitzer Space Telescope's Infrared Array Camera (IRAC). We combined these new observations with all relevant IRAC archival data of these fields in order to produce the deepest possible mosaics of these regions. In total, these observations represent nearly 11 % of the total Spitzer Space Telescope mission time. The resulting mosaics cover a total of approximately 71.5 deg^{2} in the 3.6 and 4.5 ÎŒm bands, and approximately 21.8 deg^{2} in the 5.8 and 8 ÎŒm bands. They reach at least 24 AB magnitude (measured to 5σ, in a 2″​​.5 aperture) in the 3.6 ÎŒm band and up to ∌5 mag deeper in the deepest regions. The astrometry is tied to the Gaia astrometric reference system, and the typical astrometric uncertainty for sources with 16 "< "[3.6]< 19 is â‰Č 0″​​.15. The photometric calibration is in excellent agreement with previous WISE measurements. We extracted source number counts from the 3.6 ÎŒm band mosaics, and they are in excellent agreement with previous measurements. Given that the Spitzer Space Telescope has now been decommissioned, these mosaics are likely to be the definitive reduction of these IRAC data. This survey therefore represents an essential first step in assembling multi-wavelength data on the Euclid deep fields, which are set to become some of the premier fields for extragalactic astronomy in the 2020s

    Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review

    No full text
    corecore