125 research outputs found
One-Pot Silver Nanoring Synthesis
Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation
Neutrophil responses to Aspergillosis : new roles for old players
Neutrophils are professional phagocytic cells that play a crucial role in innate immunity. Through an assortment of antifungal effector mechanisms, neutrophils are essential in controlling the early stages of fungal infection. These mechanisms range from the production of reactive oxygen intermediates and release of antimicrobial enzymes to the formation of complex extracellular traps that aid in the elimination of the fungus. Their importance in antifungal immunity is supported by the extreme susceptibility to infection of patients with primary (e.g., chronic granulomatous disease) or acquired (e.g., undergoing immunosuppressive therapy) neutrophil deficiency. More recently, common genetic variants affecting neutrophil antifungal capacity have also been disclosed as major risk factors for aspergillosis in conditions of generalized immune deficiency. The present review revisits the role of neutrophils in the host response against Aspergillus and highlights the consequences of their deficiency in susceptibility to aspergillosis.This work was supported by a Research Grant from the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Cristina Cunha was supported by the Fundacao para a Ciencia e Tecnologia, Portugal (contract SFRH/BPD/96176/2013)
Dual Organism Transcriptomics of Airway Epithelial Cells Interacting with Conidia of Aspergillus fumigatus
Background
Given the complex nature of the responses that can occur in host-pathogen interactions, dual transcriptomics offers a powerful method of elucidating these interactions during infection. The gene expression patterns of Aspergillus fumigatus conidia or host cells have been reported in a number of previous studies, but each focused on only one of the interacting organisms. In the present study, we profiled simultaneously the transcriptional response of both A. fumigatus and human airway epithelial cells (AECs).
Methodology
16HBE14o- transformed bronchial epithelial cells were incubated with A. fumigatus conidia at 37°C for 6 hours, followed by genome-wide transcriptome analysis using human and fungal microarrays. Differentially expressed gene lists were generated from the microarrays, from which biologically relevant themes were identified. Human and fungal candidate genes were selected for validation, using RT-qPCR, in both 16HBE14o- cells and primary AECs co-cultured with conidia.
Principal Findings
We report that ontologies related to the innate immune response are activated by co-incubation with A. fumigatus condia, and interleukin-6 (IL-6) was confirmed to be up-regulated in primary AECs via RT-qPCR. Concomitantly, A. fumigatus was found to up-regulate fungal pathways involved in iron acquisition, vacuolar acidification, and formate dehydrogenase activity
Substrate Specifity Profiling of the Aspergillus fumigatus Proteolytic Secretome Reveals Consensus Motifs with Predominance of Ile/Leu and Phe/Tyr
The filamentous fungus Aspergillus fumigatus (AF) can cause devastating infections in immunocompromised individuals. Early diagnosis improves patient outcomes but remains challenging because of the limitations of current methods. To augment the clinician's toolkit for rapid diagnosis of AF infections, we are investigating AF secreted proteases as novel diagnostic targets. The AF genome encodes up to 100 secreted proteases, but fewer than 15 of these enzymes have been characterized thus far. Given the large number of proteases in the genome, studies focused on individual enzymes may overlook potential diagnostic biomarkers.As an alternative, we employed a combinatorial library of internally quenched fluorogenic probes (IQFPs) to profile the global proteolytic secretome of an AF clinical isolate in vitro. Comparative protease activity profiling revealed 212 substrate sequences that were cleaved by AF secreted proteases but not by normal human serum. A central finding was that isoleucine, leucine, phenylalanine, and tyrosine predominated at each of the three variable positions of the library (44.1%, 59.1%, and 57.0%, respectively) among substrate sequences cleaved by AF secreted proteases. In contrast, fewer than 10% of the residues at each position of cleaved sequences were cationic or anionic. Consensus substrate motifs were cleaved by thermostable serine proteases that retained activity up to 50°C. Precise proteolytic cleavage sites were reliably determined by a simple, rapid mass spectrometry-based method, revealing predominantly non-prime side specificity. A comparison of the secreted protease activities of three AF clinical isolates revealed consistent protease substrate specificity fingerprints. However, secreted proteases of A. flavus, A. nidulans, and A. terreus strains exhibited striking differences in their proteolytic signatures.This report provides proof-of-principle for the use of protease substrate specificity profiling to define the proteolytic secretome of Aspergillus fumigatus. Expansion of this technique to protease secretion during infection could lead to development of novel approaches to fungal diagnosis
Genetic deficiency of NOD2 confers resistance to invasive aspergillosis
Invasive aspergillosis (IA) is a severe infection that can occur in severely immunocompromised patients. Efficient immune recognition of Aspergillus is crucial to protect against infection, and previous studies suggested a role for NOD2 in this process. However, thorough investigation of the impact of NOD2 on susceptibility to aspergillosis is lacking. Common genetic variations in NOD2 has been associated with Crohn's disease and here we investigated the influence of these genetic variations on the anti-Aspergillus host response. A NOD2 polymorphism reduced the risk of IA after hematopoietic stem-cell transplantation. Mechanistically, absence of NOD2 in monocytes and macrophages increases phagocytosis leading to enhanced fungal killing, conversely, NOD2 activation reduces the antifungal potential of these cells. Crucially, Nod2 deficiency results in resistance to Aspergillus infection in an in vivo model of pulmonary aspergillosis. Collectively, our data demonstrate that genetic deficiency of NOD2 plays a protective role during Aspergillus infection.We thank C. Wertz and M. Fanton D'Andon for providing Nod2-deficient mice, M. Schlotter for organizing patient inclusion, B. Rosler for assistance with flowcytometry. We also thank the NOD2-deficient patients for contributing to our study by providing blood samples. M.S.G. was supported by the Erasmus lifelong learning program. F.L.v.d.V. was supported by the E-rare project EURO-CMC. M.O. was supported by the NWO, 016.176.006). A.C. and C.C. were supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), and the Fundacao para a Ciencia e Tecnologia (FCT) (IF/00735/2014 to A.C. and SFRH/BPD/96176/2013 to C. C.)
In vivo Hypoxia and a Fungal Alcohol Dehydrogenase Influence the Pathogenesis of Invasive Pulmonary Aspergillosis
Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA) and 1H-NMR metabolomics, we detected ethanol in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent, pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and corticosteroid). In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis. Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may result in substantial fungal metabolism changes that influence subsequent host immune responses
Analysis of the Aspergillus fumigatus Proteome Reveals Metabolic Changes and the Activation of the Pseurotin A Biosynthesis Gene Cluster in Response to Hypoxia
The mold Aspergillus fumigatus is the most important airborne fungal pathogen. Adaptation to hypoxia represents an important virulence attribute for A. fumigatus. Therefore, we aimed at obtaining a comprehensive overview about this process on the proteome level. To ensure highly reproducible growth conditions, an oxygen-controlled, glucose-limited chemostat cultivation was established. Two-dimensional gel electrophoresis analysis of mycelial and mitochondrial proteins as well as two-dimensional Blue Native/SDS-gel separation of mitochondrial membrane proteins led to the identification of 117 proteins with an altered abundance under hypoxic in comparison to normoxic conditions. Hypoxia induced an increased activity of glycolysis, the TCA-cycle, respiration, and amino acid metabolism. Consistently, the cellular contents in heme, iron, copper, and zinc increased. Furthermore, hypoxia induced biosynthesis of the secondary metabolite pseurotin A as demonstrated at proteomic, transcriptional, and metabolite levels. The observed and so far not reported stimulation of the biosynthesis of a secondary metabolite by oxygen depletion may also affect the survival of A. fumigatus in hypoxic niches of the human host. Among the proteins so far not implicated in hypoxia adaptation, an NO-detoxifying flavohemoprotein was one of the most highly up-regulated proteins which indicates a link between hypoxia and the generation of nitrosative stress in A. fumigatus
A Role for the Unfolded Protein Response (UPR) in Virulence and Antifungal Susceptibility in Aspergillus fumigatus
Filamentous fungi rely heavily on the secretory pathway, both for the delivery of cell wall components to the hyphal tip and the production and secretion of extracellular hydrolytic enzymes needed to support growth on polymeric substrates. Increased demand on the secretory system exerts stress on the endoplasmic reticulum (ER), which is countered by the activation of a coordinated stress response pathway termed the unfolded protein response (UPR). To determine the contribution of the UPR to the growth and virulence of the filamentous fungal pathogen Aspergillus fumigatus, we disrupted the hacA gene, encoding the major transcriptional regulator of the UPR. The ΔhacA mutant was unable to activate the UPR in response to ER stress and was hypersensitive to agents that disrupt ER homeostasis or the cell wall. Failure to induce the UPR did not affect radial growth on rich medium at 37°C, but cell wall integrity was disrupted at 45°C, resulting in a dramatic loss in viability. The ΔhacA mutant displayed a reduced capacity for protease secretion and was growth-impaired when challenged to assimilate nutrients from complex substrates. In addition, the ΔhacA mutant exhibited increased susceptibility to current antifungal agents that disrupt the membrane or cell wall and had attenuated virulence in multiple mouse models of invasive aspergillosis. These results demonstrate the importance of ER homeostasis to the growth and virulence of A. fumigatus and suggest that targeting the UPR, either alone or in combination with other antifungal drugs, would be an effective antifungal strategy
DAL WEB: VO-Compatible Middleware Available for Any Data Type from SIMPOP-ENVOL
International audienceBased on VO standards, we developed middleware able to deal with any kind of data and providing interfaces to the VO community. A quick and easy configuration allows the data to be provided to the community. These products are based on TOMCAT servlets and XMLBean products. While all standards are evolving quite rapidly, these products allow a quick and easy implementation of new standards
- …