35 research outputs found

    High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells

    Get PDF
    T follicular helper (Tfh) cells are the conventional drivers of protective, germinal center (GC)-based antiviral antibody responses. However, loss of Tfh cells and GCs has been observed in patients with severe COVID-19. As T cell-B cell interactions and immunoglobulin class switching still occur in these patients, non-canonical pathways of antibody production may be operative during SARS-CoV-2 infection. We found that both Tfh-dependent and -independent antibodies were induced against SARS-CoV-2 infection, SARS-CoV-2 vaccination, and influenza A virus infection. Even though Tfh-independent antibodies to SARS-CoV-2 had evidence of reduced somatic hypermutation, they were still high-affinity, durable, and reactive against diverse spike-derived epitopes and were capable of neutralizing both homologous SARS-CoV-2 and the B.1.351 (beta) variant of concern. Indeed, we found by epitope mapping and BCR sequencing that Tfh cells focused the B cell response and therefore, in the absence of Tfh cells, a more diverse clonal repertoire was maintained. These data support an alternative pathway for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GC-derived antibodies that might compensate for GCs damaged by viral inflammation

    Lipidated promiscuous peptide augments the expression of MHC-II molecules on dendritic cells and activates T cells

    Get PDF
    Background & Objectives: In spite of the fact that BCG is the most widely used vaccine, tuberculosis (TB) continues to be a major killer disease in TB-endemic regions. Recently, many emerging evidences from the published literature indicate the role of environmental mycobacteria in blocking the processing and presentation of BCG antigens and thereby impairing with suboptimal generation of protective T cells. To surmount this problem associated with BCG, we constructed a novel lipopeptide (L91) by conjugating a promiscuous peptide consisting of CD4 T-helper epitope of sequence of 91-110 of 16 kDa antigen of Mycobacterium tuberculosis to Pam2Cys, an agonist of Toll-like receptor-2. Methods: Mice were immunized subcutaneously with 20 nmol of L91, followed by a booster with 10 nmol, after an interval of 21 days of primary immunization. Animals were sacrificed after seven days of post-booster immunization. L91 induced immune response was characterized by the expression of MHC-II and CD74 on the surface of dendritic cells (DCs) by flowcytometry. Cytokines (IL-4, IL-10, IFN-Ξ³) secretion and anti-peptide antibodies were measured by ELISA. Results: Self-adjuvanting lipopeptide vaccine (L91) was directly bound to MHC-II molecules and without requiring extensive processing for its presentation to T cells. It stimulated and activated dendritic cells and augmented the expression of MHC-II molecules. Further, it activated effector CD4 T cells to mainly secrete interferon (IFN)-Ξ³ but not interleukin (IL)-4 and IL-10. L91 did not elicit anti-peptide antibodies. Interpretation & Conclusions: The findings suggest that L91 evokes maturation and upregulation of MHC class II molecules and promotes better antigen presentation and, therefore, optimum activation of T cells. L91 mainly induces effector Th1 cells, as evidenced by predominant release of IFN-Ξ³, consequently can mount favourable immune response against M. tuberculosis . As L91 does not provoke the generation of anti-peptide antibodies, there is no fear of the efficacy of the vaccine being neutralized by pre-existing anti-mycobacterial antibodies in TB-endemic population. In conclusion, L91 may be considered as a future potential candidate vaccine against TB

    Potential T cell epitopes of Mycobacterium tuberculosis that can instigate molecular mimicry against host: implications in autoimmune pathogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular mimicry between microbial antigens and host-proteins is one of the etiological enigmas for the occurrence of autoimmune diseases. T cells that recognize cross-reactive epitopes may trigger autoimmune reactions. Intriguingly, autoimmune diseases have been reported to be prevalent in tuberculosis endemic populations. Further, association of <it>Mycobacterium tuberculosis (M. tuberculosis) </it>has been implicated in different autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Although, <it>in silico </it>analyses have identified a number of <it>M. tuberculosis </it>specific vaccine candidates, the analysis on prospective cross-reactive epitopes, that may elicit autoimmune response, has not been yet attempted. Here, we have employed bioinformatics tools to determine T cell epitopes of homologous antigenic regions between <it>M. tuberculosis </it>and human proteomes.</p> <p>Results</p> <p>Employing bioinformatics tools, we have identified potentially cross-reactive T cell epitopes restricted to predominant class I and II alleles of human leukocyte antigens (HLA). These are similar to peptides of mycobacterial proteins and considerable numbers of them are promiscuous. Some of the identified antigens corroborated with established autoimmune diseases linked with mycobacterial infection.</p> <p>Conclusions</p> <p>The present study reveals many target proteins and their putative T cell epitopes that might have significant application in understanding the molecular basis of possible T cell autoimmune reactions during <it>M. tuberculosis </it>infections.</p

    A novel therapeutic strategy of lipidated promiscuous peptide against Mycobacterium tuberculosis by eliciting Th1 and Th17 immunity of host

    Get PDF
    Regardless of the fact that potent drug-regimen is currently available, tuberculosis continues to kill 1.5 million people annually. Tuberculosis patients are not only inflicted by the trauma of disease but they also suffer from the harmful side-effects, immune suppression and drug resistance instigated by prolonged therapy. It is an exigency to introduce radical changes in the existing drug-regime and discover safer and better therapeutic measures. Hence, we designed a novel therapeutic strategy by reinforcing the efficacy of drugs to kill Mtb by concurrently boosting host immunity by L91. L91 is chimera of promiscuous epitope of Acr1 antigen of Mtb and TLR-2 agonist Pam2Cys. The adjunct therapy using drugs and L91 (D-L91) significantly declined the bacterial load in Mtb infected animals. The mechanism involved was through enhancement of IFN-Ξ³+TNF-Ξ±+ polyfunctional Th1 cells and IL-17A+IFN-Ξ³+ Th17 cells, enduring memory CD4 T cells and downregulation of PD-1. The down-regulation of PD-1 prevents CD4 T cells from undergoing exhaustion and improves their function against Mtb. Importantly, the immune response observed in animals could be replicated using T cells of tuberculosis patients on drug therapy. In future, D-L91 therapy can invigorate drugs potency to treat tuberculosis patients and reduce the dose and duration of drug-regime

    Co-Administration of IL-1+IL-6+TNF-Ξ± with Mycobacterium tuberculosis Infected Macrophages Vaccine Induces Better Protective T Cell Memory than BCG

    Get PDF
    BCG has been administered globally for more than 75 years, yet tuberculosis (TB) continues to kill more than 2 million people annually. Further, BCG protects childhood TB but is quite inefficient in adults. This indicates that BCG fails to induce long-term protection. Hence there is a need to explore alternative vaccination strategies that can stimulate enduring T cell memory response. Dendritic cell based vaccination has attained extensive popularity following their success in various malignancies. In our previous study, we have established a novel and unique vaccination strategy against Mycobacterium tuberculosis (M. tb) and Salmonella typhimurium by utilizing infected macrophages (IM). In short-term experiments (30 days), substantial degree of protection was observed. However, remarkable difference was not observed in long-term studies (240 days) due to failure of the vaccine to generate long-lasting memory T cells. Hence, in the present study we employed T cell memory augmenting cytokines IL-1+IL-6+TNF-Ξ± and IL-7+IL-15 for the induction of the enhancement of long-term protection by the vaccine. We co-administered the M. tb infected macrophages vaccine with IL-1+IL-6+TNF-Ξ± (IM-1.6.Ξ±) and IL-7+IL-15 (IM-7.15). The mice were then rested for a reasonably large period (240 days) to study the bona fide T cell memory response before exposing them to aerosolized M. tb. IM-1.6.Ξ± but not IM-7.15 significantly improved memory T cell response against M. tb, as evidenced by recall responses of memory T cells, expansion of both central as well as effector memory CD4 and CD8 T cell pools, elicitation of mainly Th1 memory response, reduction in the mycobacterial load and alleviated lung pathology. Importantly, the protection induced by IM-1.6.Ξ± was significantly better than BCG. Thus, this study demonstrates that not only antigen-pulsed DCs can be successfully employed as vaccines against cancer and infectious diseases but also macrophages infected with M. tb can be utilized with great efficacy especially in protection against TB

    Manipulation of Costimulatory Molecules by Intracellular Pathogens: Veni, Vidi, Vici!!

    Get PDF
    Some of the most successful pathogens of human, such as Mycobacterium tuberculosis (Mtb), HIV, and Leishmania donovani not only establish chronic infections but also remain a grave global threat. These pathogens have developed innovative strategies to evade immune responses such as antigenic shift and drift, interference with antigen processing/presentation, subversion of phagocytosis, induction of immune regulatory pathways, and manipulation of the costimulatory molecules. Costimulatory molecules expressed on the surface of various cells play a decisive role in the initiation and sustenance of immunity. Exploitation of the β€œcode of conduct” of costimulation pathways provides evolutionary incentive to the pathogens and thereby abates the functioning of the immune system. Here we review how Mtb, HIV, Leishmania sp., and other pathogens manipulate costimulatory molecules to establish chronic infection. Impairment by pathogens in the signaling events delivered by costimulatory molecules may be responsible for defective T-cell responses; consequently organisms grow unhindered in the host cells. This review summarizes the convergent devices that pathogens employ to tune and tame the immune system using costimulatory molecules. Studying host-pathogen interaction in context with costimulatory signals may unveil the molecular mechanism that will help in understanding the survival/death of the pathogens. We emphasize that the very same pathways can potentially be exploited to develop immunotherapeutic strategies to eliminate intracellular pathogens

    In silico methods for predicting T-cell epitopes: Dr Jekyll or Mr Hyde?

    Full text link
    In silico tools offer an attractive alternative strategy to the cumbersome experimental approaches to identify T-cell epitopes. These computational tools have metamorphosed over the years into complex algorithms that attempt to efficiently predict the binding of a plethora of peptides to HLA alleles. In recent years, the scientific community has embraced these techniques to reduce the burden of wet-laboratory experimentation. Although there are some splendid examples of the utility of these methods, there are also evidences where they fall short and remain inconsistent. Hence, are these computational tools β€˜Dr Jekyll’ or β€˜Mr Hyde’ to the researcher, who wishes to utilize them intrepidly? This article reviews the progress and pitfalls of the in silico tools that identify T-cell epitopes

    In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion

    Full text link
    Identification of promiscuous peptides, which bind to human leukocyte antigen, is indispensable for global vaccination. However, the development of such vaccines is impaired due to the exhaustive polymorphism in human leukocyte antigens. The use of in silico tools for mining such peptides circumvents the expensive and laborious experimental screening methods. Nevertheless, the intrepid use of such tools warrants a rational assessment with respect to experimental findings. Here, we have adopted a β€˜bottom upΚΌ approach, where we have used experimental data to assess the reliability of existing in silico methods. We have used a data set of 179 peptides from diverse antigens and have validated six commonly used in silico methods; ProPred, MHC2PRED, RANKPEP, SVMHC, MHCPred, and MHC-BPS. We observe that the prediction efficiency of the programs is not balanced for all the HLA-DR alleles and there is extremely high level of discrepancy in the prediction efficiency apropos of the nature of the antigen. It has not escaped our notice that the in silico methods studied here are not very proficient in identifying promiscuous peptides. This puts a much constraint on the intrepid use of such programs for human leukocyte antigen class II binding peptides. We conclude from this study that the in silico methods cannot be wholly relied for selecting crucial peptides for development of vaccines

    T cell help to B cells in germinal centers: putting the jigsaw together

    Full text link
    The Germinal Center (GC) reaction supports the processes of affinity maturation and class switching in B cells that result in long-lasting humoral immunity. CD4+ T follicular helper cells (Tfh) participate in the GC reaction to help B cells. However, recent studies highlight the heterogeneity of CD4+ T cells in GCs, which confounds the understanding of Tfh cells. Based on many recent studies, we have tried to form a working model on the niche of Tfh cells in GCs. We have also addressed whether Tfh cells are a distinct lineage and how they may be generated to help B cells
    corecore