295 research outputs found

    Evolution of the ISM of Starburst galaxies: the SN heating efficiency

    Full text link
    The interstellar medium heated by SN explosions may acquire an expansion velocity larger than the escape velocity and leave the galaxy through a supersonic wind. SN ejecta are transported out of the galaxies by such winds which thus affect the chemical evolution of the galaxies. The effectiveness of the processes mentioned above depends on the heating efficiency (HE) of the SNe, that is a matter of debate. We have constructed a simple semi-analytic model, considering the essential ingredients of a SB environment which is able to qualitatively trace the thermalisation history of the ISM in a SB region and determine the HE evolution. We find that, as long as the mass-loss rate of the clouds remains larger than the rate at which the SNRs interact one with each other, the SN heating efficiency remains very small, as radiative cooling of the gas dominates. We conclude that the HE value has a time-dependent trend that is sensitive to the initial conditions of the system.Comment: 17 pages, 18 figures, A&A accepte

    On the Influence of Magnetic Fields on the Structure of Protostellar Jets

    Get PDF
    We here present the first results of fully three-dimensional (3-D) MHD simulations of radiative cooling pulsed (time-variable) jets for a set of parameters which are suitable for protostellar outflows. Considering different initial magnetic field topologies in approximate equipartitionequipartition with the thermal gas, i.e., (i) a longitudinal, and (ii) a helical field, both of which permeating the jet and the ambient medium; and (iii) a purely toroidal field permeating only the jet, we find that the overall morphology of the pulsed jet is not very much affected by the presence of the different magnetic field geometries in comparison to a nonmagnetic calculation. Instead, the magnetic fields tend to affect essentially the detailed structure and emission properties behind the shocks at the head and at the pulse-induced internal knots, particularly for the helical and toroidal geometries. In these cases, we find, for example, that the HαH_\alpha emissivity behind the internal knots can be about three to four times larger than that of the purely hydrodynamical jet. We also find that some features, like the nose cones that often develop at the jet head in 2-D calculations involving toroidal magnetic fields, are smoothed out or absent in the 3-D calculations.Comment: 13 pages, 3 figures, Accepted by ApJ Letters after minor corrections (for high resolution figures, see http://www.iagusp.usp.br/~adriano/h.tar

    The Role of Magnetic Fields on Astrophysical Jets

    Full text link
    Highly collimated supersonic jets and less collimated outflows are observed to emerge from a wide variety of astrophysical objects. They are seen in young stellar objects (YSOs), proto-planetary nebulae, compact objects (such as galactic black holes or microquasars, and X-ray binary stars), and in the nuclei of active galaxies (AGNs). Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. What is the universal mechanism that can explain their origin? In this lecture, I briefly review the role that magnetic fields seem to play on the formation, structure, and propagation of these jets.Comment: 12 pages, pdf file; Invited Review presented at the conference "Magnetic Fields in the Universe: from Laboratory and Stars to the Primordial Structures", Angra dos Reis (Brazil), November 2004. To be published at AIP Conference Procs., eds. E.M. de Gouveia Dal Pino, G. Lugones, & A. Lazarian (Melville: AIP), in pres
    • …
    corecore