12 research outputs found
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Lignocellulose-Based Chemical Products
The use of plant biomass as starting material is one of the alternatives to reduce the dependency on fossil oil for transportation fuels and is the main alternative to replace petrochemicals. The biomass can be transformed into energy, transportation fuels, various chemical compounds and materials such as natural fibers by biochemical, chemical, physical and thermal processes. The fermentation and the chemical conversion of carbohydrates into value-added compounds has received increasing interest in the last decade, and in a biorefinery different advantages may be taken from both processes. However, the potential competition with food and feed applications and the consequent rise in feedstock prices is an important aspect to take into consideration. Therefore the use of lignocellulosic feedstocks (often referred to as second-generation feedstocks) is strongly advocated. In addition to carbohydrates also substantial amounts of lignin is produced when using lignocellulosic feedstocks. In this chapter the composition of lignocellulosic biomass is discussed followed by an overview of the most important pretreatment and fractionation technologies. Especially the effect of the different technologies on the subsequent fermentative/chemocatalytic conversions is addressed. The importance is illustrated by an overview of the most important commercial as well as anticipated chemical building blocks from carbohydrates and lignin with a special emphasis on the production of furan-based building blocks from carbohydrates and aromatic building blocks originating from lignin.</p
Characterization of lignin extracted from birch wood by a modified hydrotropic process
In this work an environmentally friendly hydrotropic process was used to extract lignin from industrial birch wood chips. Two hydrotropic treatments were performed, a conventional and a modified process. The lignins were characterized using FTIR, pyrolysis-gas chromatography-mass spectrometry (pyrolysis-GC-MS), 31P and 1H-13C HSQC NMR, and size exclusion chromatography (SEC). The chemical (carbohydrates, extractives, etc.) and elemental compositions of the lignins were also determined. The yields of both lignins were 16.1% (dry wood basis), and the obtained lignins had very low contents of non-lignin compounds. The treatments resulted in significant changes of the structure of the lignins, a decrease in aliphatic hydroxyls and an increase in phenolic ones. The lignin isolated by the modified treatment underwent more substantial change than the reference one. It is believed that the data presented will facilitate utilization of hydrotropic lignin and promote the adoption of the hydrotropic process in the pulp and biorefinery industry.</p
Mutual compatibility aspects and rheological assessment of (modified) lignin–bitumen blends as potential binders for asphalt
Recent innovations in pavement engineering are driven by sustainability and circularity. Bitumen is a fossil fuel-based binder, traditionally used for asphalt pavement. In recent years, variation in bitumen quality and consistency have raised concerns in performance and workability. To achieve the sustainability target and ensure the quality, the market is exploring renewable alternatives to bitumen: such as lignin. A partial (i.e., 25 wt.%) replacement of bitumen with native and chemically modified lignin is evaluated in this study where the influence of chemical modification, compatibility and rheological properties of the lignin-bitumen blends are assessed. By introducing lignin into bitumen, the binder becomes stiffer depending on the extent and type of modification. An exception is observed in lignin modified with ethyl hexyl glycidyl ether resulting in a comparable viscoelastic property to the original bitumen. The blends show an improvement in the high-temperature properties and introduce more flexibility to the lowtemperature properties. The influence of molecular fractions, i.e., SARA and acid value of bitumen are evaluated in relation to compatibility
Monitoring Molecular Weight Changes during Technical Lignin Depolymerization by Operando Attenuated Total Reflectance Infrared Spectroscopy and Chemometrics
Technical lignins are increasingly available at industrial scale, offering opportunities for valorization, such as by (partial) depolymerization. Any downstream lignin application requires careful tailoring of structural properties, such as molecular weight or functional group density, properties that are difficult to control or predict given the structure variability and recalcitrance of technical lignins. Online insight into changes in molecular weight (Mw), to gauge the extent of lignin depolymerization and repolymerization, would be highly desired to improve such control, but cannot be readily provided by the standard ex-situ techniques, such as size exclusion chromatography (SEC). Herein, operando attenuated total reflectance infrared (ATR-IR) spectroscopy combined with chemometrics provided temporal changes in Mw during lignin depolymerization with high resolution. More specifically, ex-situ SEC-derived Mw and polydispersity data of kraft lignin subjected to aqueous phase reforming conditions could be well correlated with ATR-IR spectra of the reaction mixture as a function of time. The developed method showed excellent regression results and relative error, comparable to the standard SEC method. The method developed has the potential to be translated to other lignin depolymerization processes
Monitoring Molecular Weight Changes during Technical Lignin Depolymerization by Operando Attenuated Total Reflectance Infrared Spectroscopy and Chemometrics
Technical lignins are increasingly available at industrial scale, offering opportunities for valorization, such as by (partial) depolymerization. Any downstream lignin application requires careful tailoring of structural properties, such as molecular weight or functional group density, properties that are difficult to control or predict given the structure variability and recalcitrance of technical lignins. Online insight into changes in molecular weight (Mw), to gauge the extent of lignin depolymerization and repolymerization, would be highly desired to improve such control, but cannot be readily provided by the standard ex-situ techniques, such as size exclusion chromatography (SEC). Herein, operando attenuated total reflectance infrared (ATR-IR) spectroscopy combined with chemometrics provided temporal changes in Mw during lignin depolymerization with high resolution. More specifically, ex-situ SEC-derived Mw and polydispersity data of kraft lignin subjected to aqueous phase reforming conditions could be well correlated with ATR-IR spectra of the reaction mixture as a function of time. The developed method showed excellent regression results and relative error, comparable to the standard SEC method. The method developed has the potential to be translated to other lignin depolymerization processes
Use of lignin as additive in polyethylene for food protection: Insect repelling effect of an ethyl acetate phenolic extract
Lignocellulose biorefinery processes, including the separation of plant cell-wall components, generate lignin-rich streams referred to as “lignin fractions”. Three lignin fractions with different phenol group content were dry blended with high density polyethylene (HDPE) and further extruded. The materials obtained were subsequently tested for their mechanical properties which were little affected even with 5wt% of lignin. The lignin fraction with the highest phenol group content, an ethyl acetate extract (EAL) from a technical soda lignin, showed the best performance when blended with HDPE. Besides antioxidant and antimicrobial properties (especially on S. Aureus) competing with other natural extract, the fraction conferred to the material insect repellent properties towards two types of insects, an invader (Sitophylus oryzae) and a penetrator (Plodia interpunctella). These combined properties make films made out of this material ideal candidates for protecting food that suffers attack from such insects
Electro-oxidative depolymerisation of technical lignin in water using platinum, nickel oxide hydroxide and graphite electrodes
In order to improve the lignin exploitation to added-value bioproducts, a mild chemical conversion route based on electrochemistry was investigated. For the first time, soda lignin Protobind™ 1000 (technical lignin from the pulp & paper industry) was studied by cyclic voltammetry to preliminarily investigate the effect of the main reaction parameters, such as the type of electrode material (platinum, nickel oxide hydroxide, graphite), the pH (12, 13, 14), the scan rate (10, 50, 100, 250 mV s-1), the substrate concentration (2, 20 g L-1) and the oxidation/reduction potential (from -0.8 to +0.8 V). Under the optimal reaction conditions among those tested (NiOOH electrode, pH 14, lignin 20 g L-1, 0.4 V), the electro-oxidative depolymerisation of lignin by electrolysis was performed in a divided cell. The reaction products were identified and quantified by ultra-pressure liquid chromatography coupled with mass spectrometry. The main products were sinapic acid, vanillin, vanillic acid, and acetovanillone. The obtained preliminary results demonstrated the potential feasibility of this innovative electrochemical route for lignin valorisation for the production of bio-aromatic chemicals. This journal i
New insights into the base catalyzed depolymerization of technical lignins: A systematic comparison
A first systematic approach on the base catalyzed depolymerization (BCD) of five technical lignins derived from various botanical origins (herbaceous, hardwood and softwood) and covering the main three industrial pulping methods (soda, kraft and organosolv) is reported. This study provides a first of its kind in-depth quantification and structural characterization of two main BCD fractions namely lignin oil and lignin residue, describing the influence of the BCD process conditions. Depolymerization is evaluated in terms of lignin conversion, lignin oil yield, phenolic monomer selectivity and the production of lignin residue and char. Lignin oils were extensively characterized by size exclusion chromatography (SEC), GC-MS, GC-FID, 13C-NMR, HSQC NMR and elemental analysis. GC × GC-FID was used to identify and quantify distinct groups of monomeric compounds (methoxy phenols, phenols, dihydroxy-benzenes) in the lignin oil. The lignin oil yields (w/w) ranged from 20-31% with total monomer contents ranging from 48 to 57% w/w. SEC analysis indicated the presence of dimers/oligomers in the lignin oil, which through HSQC NMR analysis were confirmed to contain new, non-native interunit linkages. 13C NMR analyses of the lignin oils suggest the presence of diaryl type linkages (i.e. aryl-aryl, aryl C-O) evidencing deconstruction and recombination of lignin fragments during BCD. Irrespective of the lignin source, a residue, often regarded as ‘unreacted’ residual lignin was the main product of BCD (43 to 70% w/w). Our study highlights that this residue has different structural properties and should not be considered as unreacted lignin, but rather as an alkali soluble condensed aromatic material. HSQC, DEPT-135, 13C, and 31P NMR and SEC analyses confirm that the BCD residues are indeed more condensed, with increased phenolic hydroxyl content and lower molecular weights compared to all feed lignins. Subsequent BCD of solid residual fractions produced only low oil yields (6-9% w/w) with lower phenolic monomer yields (4% w/w) compared to original lignin, confirming the significantly more recalcitrant structure. Our study improves the overall understanding of the BCD process, highlights important feedstock-dependent outcomes and ultimately contributes to the complete valorization of BCD-derived lignin streams
Evaluation of Soda Lignin from Wheat Straw/Sarkanda Grass as a Potential Future Consolidant for Archaeological Wood
This work is part of a larger study, which aims to use soda lignin from straw as the starting point for a non-aqueous consolidant for highly degraded archaeological wood from the Oseberg collection. This wood was treated with alum salts in the early 1900s, is actively degrading and exists in varying states of preservation. Non-aqueous consolidants are an option to stabilize this wood mechanically in cases where it is too deteriorated to undergo aqueous-based retreatments, for example using polyethylene glycol. The aim of this study was to compare the extent of penetration of two soda lignin preparations in low- to medium-degraded archaeological pine. The soda lignins were dissolved in ethyl acetate and had two molecular weight groups: P1000 (molecular weight Mw of~3 kDa) and the ethyl acetate fraction FB01 (Mw of ~1 kDa). Penetration after immersion was evaluated by infrared spectroscopy and analytical pyrolysis. Treated specimens were also evaluated using weight and dimensional change and scanning electron microscopy. Both lignins penetrated into sample cores, but P1000 did not penetrate as well as FB01. This may be due to differences in their molecular weights, but also differences in polarity due to the presence of different functional groups