390 research outputs found
Longitudinal Study of Primary HIV-1 Isolates in Drug-Naïve Individuals Reveals the Emergence of Variants Sensitive to Anti-HIV-1 Monoclonal Antibodies
To study how virus evolution affects neutralization sensitivity and to determine changes that occur in and around epitopes, we tested the ability of 13 anti-HIV-1 gp120 (anti-V2, anti-V3, anti-CD4bd and anti-carbohydrate) human monoclonal antibodies (mAbs) to neutralize sequential viruses obtained from five HIV-1 chronically infected drug naïve individuals. Overall, primary viruses collected from patients at first visit were resistant to neutralization by all anti-HIV-1 mAbs with the exception of one virus sensitive to IgG1b12. Four of the five patients' viruses evolved increased sensitivity to neutralization by anti-V3 mAbs. Virus collected from a patient obtained 31 months later, evolved increased sensitivity to anti-V2, anti-V3, and anti-CD4bd mAbs. Furthermore, the anti-V2 and anti-CD4bd mAbs also exhibited increased neutralization capacities against virus collected from a patient 29 months later. Of the seven anti-V3 mAbs, five showed increased potency to neutralize the evolved virus from a patient collected after 11 months, and three exhibited increased potency against viruses from two patients collected 29 and 36 months later. Anti-V3 mAbs exhibited the most breadth and potency in neutralizing the evolving viruses. Sequence analysis of the envelope regions revealed amino acid conservation within the V3 loop, while most of the changes identified occurred outside the core epitopes and in particular within the C3 region; these may account for increased neutralization sensitivity. These studies demonstrate that in vivo, HIV-1 can evolve increased neutralization sensitivity to mAbs and that the spectrum of neutralization capacities by mAbs can be broader when studied in longitudinal analysis
Theory of vortex excitation imaging via an NMR relaxation measurement
The temperature dependence of the site-dependent nuclear spin relaxation time
T_1 around vortices is studied in s-wave and d-wave superconductors.Reflecting
low energy electronic excitations associated with the vortex core, temperature
dependences deviate from those of the zero-field case, and T_1 becomes faster
with approaching the vortex core. In the core region, T_1^{-1} has a new peak
below T_c. The NMR study by the resonance field dependence may be a new method
to prove the spatial resolved vortex core structure in various superconductors.Comment: 5 pages, 3 figure
High-velocity collimated outflows in planetary nebulae: NGC 6337, He 2-186, and K 4-47
We have obtained narrow-band images and high-resolution spectra of the
planetary nebulae NGC 6337, He 2-186, and K 4-47, with the aim of investigating
the relation between their main morphological components and several
low-ionization features present in these nebulae. The data suggest that NGC
6337 is a bipolar PN seen almost pole on, with polar velocities higher than 200
km/s. The bright inner ring of the nebula is interpreted to be the "equatorial"
density enhancement. It contains a number of low-ionization knots and outward
tails that we ascribe to dynamical instabilities leading to fragmentation of
the ring or transient density enhancements due to the interaction of the
ionization front with previous density fluctuations in the ISM. The lobes show
a pronounced point-symmetric morphology and two peculiar low-ionization
filaments whose nature remains unclear. The most notable characteristic of He
2-186 is the presence of two high-velocity (higher than 135 km/s) knots from
which an S-shaped lane of emission departs toward the central star. K 4-47 is
composed of a compact core and two high-velocity, low-ionization blobs. We
interpret the substantial broadening of line emission from the blobs as a
signature of bow shocks, and using the modeling of Hartigan, Raymond, & Hartman
(1987), we derive a shock velocity of 150 km/s and a mild inclination of the
outflow on the plane of the sky. We discuss possible scenarios for the
formation of these nebulae and their low-ionization features. In particular,
the morphology of K 4-47 hardly fits into any of the usually adopted mass-loss
geometries for single AGB stars. Finally, we discuss the possibility that
point-symmetric morphologies in the lobes of NGC 6337 and the knots of He 2-186
are the result of precessing outflows from the central stars.Comment: 16 pages plus 7 figures, ApJ accepted. Also available at
http://www.iac.es/publicaciones/preprints.htm
Morphology and Composition of the Helix Nebula
We present new narrow-band filter imagery in H-alpha and [N II] 6584 along
with UV and optical spectrophotometry measurements from 1200 to 9600 Angstroms
of NGC 7293, the Helix Nebula, a nearby, photogenic planetary nebula of large
diameter and low surface brightness. Detailed models of the observable ionized
nebula support the recent claim that the Helix is actually a flattened disk
whose thickness is roughly one-third its diameter with an inner region
containing hot, highly ionized gas which is generally invisible in narrow-band
images. The outer visible ring structure is of lower ionization and temperature
and is brighter because of a thickening in the disk. We also confirm a central
star effective temperature and luminosity of 120,000K and 100L_sun, and we
estimate a lower limit to the nebular mass to be 0.30M_sun. Abundance
measurements indicate the following values: He/H=0.12 (+/-0.017),
O/H=4.60x10^-4 (+/-0.18), C/O=0.87 (+/-0.12), N/O=0.54 (+/-0.14), Ne/O=0.33
(+/-0.04), S/O=3.22x10^-3 (+/-0.26), and Ar/O=6.74x10^-3 (+/-0.76). Our carbon
abundance measurements represent the first of their kind for the Helix Nebula.
The S/O ratio which we derive is anomalously low; such values are found in only
a few other planetary nebulae. The central star properties, the super-solar
values of He/H and N/O, and a solar level of C/O are consistent with a 6.5M_sun
progenitor which underwent three phases of dredge-up and hot bottom burning
before forming the planetary nebula.Comment: 50-page manuscript plus 11 postscript figures. This revised version
corrects a typo in earlier submission. Nothing else has changed. Accepted for
publication in the Astrophysical Journa
The effects of magnetic field on the d-density wave order in the cuprates
We consider the effects of a perpendicular magnetic field on the d-density
wave order and conclude that if the pseudogap phase in the cuprates is due to
this order, then it is highly insensitive to the magnetic field in the
underdoped regime, while its sensitivity increases as the gap vanishes in the
overdoped regime. This appears to be consistent with the available experiments
and can be tested further in neutron scattering experiments. We also
investigate the nature of the de Haas- van Alphen effect in the ordered state
and discuss the possibility of observing it.Comment: 5 pages, 4 eps figures, RevTex4. Corrected a silly but important typo
in the abstrac
Discrimination between the superconducting gap and the pseudo-gap in Bi2212 from intrinsic tunneling spectroscopy in magnetic field
Intrinsic tunneling spectroscopy in high magnetic field () is used for a
direct test of superconducting features in a quasiparticle density of states of
high- superconductors. We were able to distinguish with a great clarity
two co-existing gaps: (i) the superconducting gap, which closes as and , and (ii) the -axis pseudo-gap, which does not
change neither with , nor . Strikingly different magnetic field
dependencies, together with previously observed different temperature
dependencies of the two gaps ~\cite{Krasnov}, speak against the superconducting
origin of the pseudo-gap.Comment: 4 pages, 4 eps figure
V605 Aql: The Older Twin of Sakurai's Object
New optical spectra have been obtained with VLT/FORS2 of the final helium
shell flash (FF) star, V605 Aql, which peaked in brightness in 1919. New models
suggest that this star is experiencing a very late thermal pulse. The evolution
to a cool luminous giant and then back to a compact hot star takes place in
only a few years. V605 Aql, the central star of the Planetary Nebula (PN), A58,
has evolved from T5000 K in 1921 to 95,000 K today. There are
indications that the new FF star, Sakurai's Object (V4334 Sgr), which appeared
in 1996, is evolving along a similar path. The abundances of Sakurai's Object
today and V605 Aql 80 years ago mimic the hydrogen deficient R Coronae Borealis
(RCB) stars with 98% He and 1% C. The new spectra show that V605 Aql has
stellar abundances similar to those seen in Wolf-Rayet [WC] central stars of
PNe with ~55% He, and ~40% C. The stellar spectrum of V605 Aql can be seen even
though the star is not directly detected. Therefore, we may be seeing the
spectrum in light scattered around the edge of a thick torus of dust seen
edge-on. In the present state of evolution of V605 Aql, we may be seeing the
not too distant future of Sakurai's Object.Comment: 12 pages, 1 figure, ApJ Letters in pres
Asteroseismological constraints on the pulsating planetary nebula nucleus (PG1159-type) RX J2117.1+3412
We present asteroseismological inferences on RX J2117.1+3412, the hottest
known pulsating PG1159 star. Our results are based on full PG1159 evolutionary
models recently presented by Miller Bertolami & Althaus (2006). We performed
extensive computations of adiabatic g-mode pulsation periods on PG1159
evolutionary models with stellar masses ranging from 0.530 to 0.741 Mo. PG1159
stellar models are extracted from the complete evolution of progenitor stars
started from the ZAMS, through the thermally pulsing AGB and born-again phases
to the domain of the PG 1159 stars. We constrained the stellar mass of RX
J2117.1+3412 by comparing the observed period spacing with the asymptotic
period spacing and with the average of the computed period spacings. We also
employed the individual observed periods to find a representative seismological
model. We derive a stellar mass of 0.56-0.57 Mo from the period spacing data
alone. In addition, we found a best-fit model representative for RX
J2117.1+3412 with an effective temperature of 163,400 K, a stellar mass of
0.565 Mo, and a surface gravity log g= 6.61. The derived stellar luminosity and
radius are log(L/Lo)= 3.36 and log(R/Ro)= -1.23, respectively, and the He-rich
envelope thickness is Menv= 0.02 Mo. We derive a seismic distance of 452 pc and
a linear size of the planetary nebula of 1.72 pc. These inferences seem to
solve the discrepancy between the RX J2117.1+3412 evolutionary timescale and
the size of the nebula. All of the seismological tools we use concur to the
conclusion that RX J2117.1+3412 must have a stellar mass of 0.565 Mo much in
agreement with recent asteroseismology studies and in clear conflict with the
predictions of spectroscopy plus evolutionary tracks.Comment: 10 pages, 6 figures, 2 tables. Accepted for publication in Astronomy
and Astrophysics. Erratum available as a separate fil
The physical parameters, excitation and chemistry of the rim, jets and knots of the planetary nebula NGC 7009
We present long-slit optical spectra along the major axis of the planetary
nebula NGC 7009. These data allow us to discuss the physical, excitation and
chemical properties of all the morphological components of the nebula,
including its remarkable systems of knots and jets. The main results of this
analysis are the following: i) the electron temperature throughout the nebula
is remarkably constant, T_e[OIII] = 10200K; ii) the bright inner rim and inner
pair of knots have similar densities of N_e = 6000cm^{-3}, whereas a much lower
density of N_e = 1500cm^{-3} is derived for the outer knots as well as for the
jets; iii) all the regions (rim, inner knots, jets and outer knots) are mainly
radiatively excited; and iv) there are no clear abundance changes across the
nebula for He, O, Ne, or S. There is a marginal evidence for an overabundance
of nitrogen in the outer knots (ansae), but the inner ones (caps) and the rim
have similar N/H values that are at variance with previous results. Our data
are compared to the predictions of theoretical models, from which we conclude
that the knots at the head of the jets are not matter accumulated during the
jet expansion through the circumstellar medium, neither can their origin be
explained by the proposed HD or MHD interacting-wind models for the formation
of jets/ansae, since the densities as well as the main excitation mechanisms of
the knots, disagree with model predictions.Comment: Figure 1 was changed because features were misidentified in the
previous version. 17 pages including 5 figures and 3 tables. ApJ in press.
Also available at http://www.iac.es/galeria/denise
Peculiarities of electronic heat capacity of thulium cuprates in pseudogap state
Precise calorimetric measurements have been carried out in the 7 - 300 K
temperature range on two ceramic samples of thulium 123 cuprates TmBa2Cu3O6.92
and TmBa2Cu3O6.70. The temperature dependence of the heat capacity was analyzed
in the region where the pseudogap state (PGS) takes place. The lattice
contribution was subtracted from the experimental data. The PGS component has
been obtained by comparing electronic heat capacities of two investigated
samples because the PGS contribution for the 6.92 sample is negligible. The
anomalous behavior of the electronic heat capacity near the temperature
boundary of PGS was found. It is supposed that this anomaly is due to
peculiarities in N(E) function where N is the density of electronic states and
E is the energy of carriers of charge.Comment: 12 pages, 3 Postscript figure
- …