687 research outputs found

    Mott transitions in ternary flavor mixtures of ultracold fermions on optical lattices

    Full text link
    Ternary flavor mixtures of ultracold fermionic atoms in an optical lattice are studied in the case of equal, repulsive on-site interactions U>0. The corresponding SU(3) invariant Hubbard model is solved numerically exactly within dynamical mean-field theory using multigrid Hirsch-Fye quantum Monte Carlo simulations. We establish Mott transitions close to integer filling at low temperatures and show that the associated signatures in the compressibility and pair occupancy persist to high temperatures, i.e., should be accessible to experiments. In addition, we present spectral functions and discuss the properties of a ``semi-compressible'' state observed for large U near half filling.Comment: 4 pages, 5 figure

    N\'{e}el transition of lattice fermions in a harmonic trap: a real-space DMFT study

    Get PDF
    We study the magnetic ordering transition for a system of harmonically trapped ultracold fermions with repulsive interactions in a cubic optical lattice, within a real-space extension of dynamical mean-field theory (DMFT). Using a quantum Monte Carlo impurity solver, we establish that antiferromagnetic correlations are signaled, at strong coupling, by an enhanced double occupancy. This signature is directly accessible experimentally and should be observable well above the critical temperature for long-range order. Dimensional aspects appear less relevant than naively expected.Comment: 4 pages, 4 figure

    Superconducting single-mode contact as a microwave-activated quantum interferometer

    Full text link
    The dynamics of a superconducting quantum point contact biased at subgap voltages is shown to be strongly affected by a microwave electromagnetic field. Interference among a sequence of temporally localized, microwave-induced Landau-Zener transitions between current carrying Andreev levels results in energy absorption and in an increase of the subgap current by several orders of magnitude. The contact is an interferometer in the sense that the current is an oscillatory function of the inverse bias voltage. Possible applications to Andreev-level spectroscopy and microwave detection are discussed

    Overtones of Isoscalar Giant Resonances in medium-heavy and heavy nuclei

    Full text link
    A semi-microscopic approach based on both the continum-random-phase-approximation (CRPA) method and a phenomenological treatment of the spreading effect is extended and applied to describe the main properties (particle-hole strength distribution, energy-dependent transition density, partial direct-nucleon-decay branching ratios) of the isoscalar giant dipole, second monopole, and second quadrupole resonances. Abilities of the approach are checked by description of gross properties of the main-tone resonances. Calculation results obtained for the resonances in a few singly- and doubly-closed-shell nuclei are compared with available experimental data.Comment: 12 pages, 14 figures, submitted to Phys. Rev.

    Electrical Manipulation of Nanomagnets

    Full text link
    We demonstrate a possibility to manipulate the magnetic coupling between two nanomagnets with a help of ac electric field. In the scheme suggested the magnetic coupling in question is mediated by a magnetic particle contacting with both of the nanomagnets through the tunnel barriers. The electric field providing a successive suppression of the barriers leads to pumping of magnetization through the mediating particle. Time dependent dynamics of the particle magnetization allows to to switch between ferro- and antiferromagnetic couplings.Comment: 4 pages, 2 figure

    The development of Russian health-care system: problems and prospects

    Get PDF
    Thus, the implementation of the above mentioned points will assist the efficiency of a modem health-care system in general. It also helps to provide affordable and quality medical service on the basis of common requirements and approaches according to the latest achieve ments of scientific and technical progress, which will be guarantee of sustainable socio­ economic development of Russia in the long ter

    Universal probes for antiferromagnetic correlations and entropy in cold fermions on optical lattices

    Full text link
    We determine antiferromagnetic (AF) signatures in the half-filled Hubbard model at strong coupling on a cubic lattice and in lower dimensions. Upon cooling, the transition from the charge-excitation regime to the AF Heisenberg regime is signaled by a universal minimum of the double occupancy at entropy s=S/(N k_B)=s*=ln(2) per particle and a linear increase of the next-nearest neighbor (NNN) spin correlation function for s<s*. This crossover, driven by a gain in kinetic exchange energy, appears as the essential AF physics relevant for current cold-atom experiments. The onset of long-range AF order (at low s on cubic lattices) is hardly visible in nearest-neighbor spin correlations versus s, but could be detected in spin correlations at or beyond NNN distances.Comment: 4+e pages, 4 figures; this paper significantly expands the strong-coupling scenario put forward in arXiv:1105.3356 (but omits other parts for which arXiv:1105.3356 has already been cited in PRL). Version accepted for publication in Phys. Rev. A R
    corecore