2 research outputs found

    Characterization of two genes encoding metal tolerance proteins from <em>Beta vulgaris</em> subspecies <em>maritima</em> that confers manganese tolerance in yeast

    Get PDF
    Manganese (Mn2+) is an essential micronutrient in plants. However increased Mn2+ levels are toxic to plant cells. Metal tolerance proteins (MTPs), member of cation diffusion facilitator protein (CDF) family, have important roles in metal homeostatis in different plant species and catalyse efflux of excess metal ions. In this study, we identified and characterized two MTP genes from Beta vulgaris spp. maritima (B. v. ssp. maritima). Overexpression of these two genes provided Mn tolerance in yeast cells. Sequence analyses displayed BmMTP10 and BmMTP11as members of the Mn-CDF family. Functional analyses of these proteins indicated that they are specific to Mn2+ with a role in reducing excess cellular Mn2+ levels when expressed in yeast. GFP-fusion constructs of both proteins localized to the Golgi apparatus as a punctuated pattern. Finally, Q-RT-PCR results showed that BmMTP10 expression was induced threefold in response to the excess Mn2+ treatment. On the other hand BmMTP11 expression was not affected in response to excess Mn2+ levels. Thus, our results suggest that the BmMTP10 and BmMTP11 proteins from B. v. ssp. maritima have non-redundant functions in terms of Mn2+ detoxification with a similar in planta localization and function as the Arabidopsis Mn-CDF homolog AtMTP11 and this conservation shows the evolutionary importance of these vesicular proteins in heavy metal homeostatis among plant species.Danish Strategic Research Council (NUTRIEFFICIENT) (10-093498); Scientific and Technical Research Council of Turkey (113Z401
    corecore