21 research outputs found
Methodological contributions by means of machine learning methods for automatic music generation and classification
189 p.Ikerketa lan honetan bi gai nagusi landu dira: musikaren sorkuntza automatikoa eta sailkapena. Musikaren sorkuntzarako bertso doinuen corpus bat hartu da abiapuntu moduan doinu ulergarri berriak sortzeko gai den metodo bat sortzeko. Doinuei ulergarritasuna hauen barnean dauden errepikapen egiturek ematen dietela suposatu da, eta metodoaren hiru bertsio nagusi aurkeztu dira, bakoitzean errepikapen horien definizio ezberdin bat erabiliz.Musikaren sailkapen automatikoan hiru ataza garatu dira: generoen sailkapena, familia melodikoen taldekatzea eta konposatzaileen identifikazioa. Musikaren errepresentazio ezberdinak erabili dira ataza bakoitzerako, eta ikasketa automatikoko hainbat teknika ere probatu dira, emaitzarik hoberenak zeinek ematen dituen aztertzeko.Gainbegiratutako sailkapenaren alorrean ere binakako sailkapenaren gainean lana egin da, aurretik existitzen zen metodo bat optimizatuz. Hainbat datu baseren gainean probatu da garatutako teknika, baita konposatzaile klasikoen piezen ezaugarriez osatutako datu base batean ere
Methodological contributions by means of machine learning methods for automatic music generation and classification
189 p.Ikerketa lan honetan bi gai nagusi landu dira: musikaren sorkuntza automatikoa eta sailkapena. Musikaren sorkuntzarako bertso doinuen corpus bat hartu da abiapuntu moduan doinu ulergarri berriak sortzeko gai den metodo bat sortzeko. Doinuei ulergarritasuna hauen barnean dauden errepikapen egiturek ematen dietela suposatu da, eta metodoaren hiru bertsio nagusi aurkeztu dira, bakoitzean errepikapen horien definizio ezberdin bat erabiliz.Musikaren sailkapen automatikoan hiru ataza garatu dira: generoen sailkapena, familia melodikoen taldekatzea eta konposatzaileen identifikazioa. Musikaren errepresentazio ezberdinak erabili dira ataza bakoitzerako, eta ikasketa automatikoko hainbat teknika ere probatu dira, emaitzarik hoberenak zeinek ematen dituen aztertzeko.Gainbegiratutako sailkapenaren alorrean ere binakako sailkapenaren gainean lana egin da, aurretik existitzen zen metodo bat optimizatuz. Hainbat datu baseren gainean probatu da garatutako teknika, baita konposatzaile klasikoen piezen ezaugarriez osatutako datu base batean ere
Bertso transformation with pattern-based sampling
This paper presents a method to generate new melodies, based on conserving the semiotic structure of a template piece. A pattern discovery algorithm is applied to a template piece to extract significant segments: those that are repeated and those that are transposed in the piece. Two strategies are combined to describe the semiotic coherence structure of the template piece: inter-segment coherence and intra-segment coherence. Once the structure is described it is used as a template for new musical content that is generated using a statistical model created from a corpus of bertso melodies and iteratively improved using a stochastic optimization method. Results show that the method presented here effectively describes a coherence structure of a piece by discovering repetition and transposition relations between segments, and also by representing the relations among notes within the segments. For bertso generation the method correctly conserves all intra and inter-segment coherence of the template, and the optimization method produces coherent generated melodies
Towards the Use of Similarity Distances to Music Genre Classification: a Comparative Study
Music genre classification is a challenging research concept, for which open questions remain regarding classification approach, music piece representation, distances between/within genres, and so on. In this paper an investigation on the classification of generated music pieces is performed, based on the idea that grouping close related known pieces in different sets -or clusters- and then generating in an automatic way a new song which is somehow "inspired" in each set, the new song would be more likely to be classified as belonging to the set which inspired it, based on the same distance used to separate the clusters. Different music pieces representations and distances among pieces are used; obtained results are promising, and indicate the appropriateness of the used approach even in a such a subjective area as music genre classification is.This work was supported by IT900-16 Research Team from the Basque Government
Association Mining of Folk Music Genres and Toponyms
This paper demonstrates how association rule mining can be applied to discover relations between two ontologies of folk music: a genre and a region ontology. Genre– region associations have been widely studied in folk music research but have been neglected in music information retrieval. We present a method of association rule min- ing with constraints consisting of rule templates and rule evaluation measures to identify different, musicologically motivated, categories of genre–region associations. The method is applied to a corpus of 1902 Basque folk tunes, and several interesting rules and rule sets are discovere
Ontologies for representation of folk song metadata
The digital management of collections in museums, archives, libraries and galleries is an increasingly important part of cultural heritage studies. This paper describes a representation for folk song metadata, based on the Web Ontology Language (OWL) implementation of the CIDOC Conceptual Reference Model. The OWL representation facilitates encoding and reasoning over a genre ontology, while the CIDOC model enables a representation of complex spatial containment and proximity relations among geographic regions. It is shown how complex queries of folk song metadata, relying on inference and not only retrieval, can be expressed in OWL and solved using a description logic reasoner
Using Common Spatial Patterns to Select Relevant Pixels for Video Activity Recognition
first_page
settings
Open AccessArticle
Using Common Spatial Patterns to Select Relevant Pixels for Video Activity Recognition
by Itsaso RodrÃguez-Moreno
* [OrcID] , José MarÃa MartÃnez-Otzeta
[OrcID] , Basilio Sierra
[OrcID] , Itziar Irigoien
, Igor Rodriguez-Rodriguez
and Izaro Goienetxea
[OrcID]
Department of Computer Science and Artificial Intelligence, University of the Basque Country, Manuel Lardizabal 1, 20018 Donostia-San Sebastián, Spain
*
Author to whom correspondence should be addressed.
Appl. Sci. 2020, 10(22), 8075; https://doi.org/10.3390/app10228075
Received: 1 October 2020 / Revised: 30 October 2020 / Accepted: 11 November 2020 / Published: 14 November 2020
(This article belongs to the Special Issue Advanced Intelligent Imaging Technology â…¡)
Download PDF Browse Figures
Abstract
Video activity recognition, despite being an emerging task, has been the subject of important research due to the importance of its everyday applications. Video camera surveillance could benefit greatly from advances in this field. In the area of robotics, the tasks of autonomous navigation or social interaction could also take advantage of the knowledge extracted from live video recording. In this paper, a new approach for video action recognition is presented. The new technique consists of introducing a method, which is usually used in Brain Computer Interface (BCI) for electroencephalography (EEG) systems, and adapting it to this problem. After describing the technique, achieved results are shown and a comparison with another method is carried out to analyze the performance of our new approach.This work has been partially funded by the Basque Government, Research Teams grant number IT900-16, ELKARTEK 3KIA project KK-2020/00049, and the Spanish Ministry of Science (MCIU), the State Research Agency (AEI), and the European Regional Development Fund (FEDER), grant number RTI2018-093337-B-I100 (MCIU/AEI/FEDER, UE). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research
Sampling starting point.
<p>Example of a starting point for the stochastic hill climbing method.</p
Interval: Obtained accuracies by distance type and cluster number (melody ID 1360).
<p>Interval: Obtained accuracies by distance type and cluster number (melody ID 1360).</p
Contour: Obtained accuracies by distance type and cluster number.
<p>Contour: Obtained accuracies by distance type and cluster number.</p