455 research outputs found

    Teacher candidates\u27 perceptions of traditional classroom assessments and electronic portfolio classroom assessments

    Get PDF
    The purpose of this study was to determine if there are differences in teacher candidates\u27 perceptions of the contributions of traditional classroom assessments and electronic portfolio classroom assessments to the candidates\u27 development of their understanding of education core content areas and the use of reflections. The secondary purpose of this study was to determine teacher candidates\u27 knowledge of Interstate New Teacher Assessment and Support Consortium (INTASC)(1992) principles given hours spent within the traditional and electronic portfolio classroom assessments

    Robust testing in generalized linear models by sign flipping score contributions

    Get PDF
    Generalized linear models are often misspecified because of overdispersion, heteroscedasticity and ignored nuisance variables. Existing quasi-likelihood methods for testing in misspecified models often do not provide satisfactory type I error rate control. We provide a novel semiparametric test, based on sign flipping individual score contributions. The parameter tested is allowed to be multi-dimensional and even high dimensional. Our test is often robust against the mentioned forms of misspecification and provides better type I error control than its competitors. When nuisance parameters are estimated, our basic test becomes conservative. We show how to take nuisance estimation into account to obtain an asymptotically exact test. Our proposed test is asymptotically equivalent to its parametric counterpart

    Permutation-based true discovery proportions for functional magnetic resonance imaging cluster analysis

    Get PDF
    We propose a permutation-based method for testing a large collection of hypotheses simultaneously. Our method provides lower bounds for the number of true discoveries in any selected subset of hypotheses. These bounds are simultaneously valid with high confidence. The methodology is particularly useful in functional Magnetic Resonance Imaging cluster analysis, where it provides a confidence statement on the percentage of truly activated voxels within clusters of voxels, avoiding the well-known spatial specificity paradox. We offer a user-friendly tool to estimate the percentage of true discoveries for each cluster while controlling the family-wise error rate for multiple testing and taking into account that the cluster was chosen in a data-driven way. The method adapts to the spatial correlation structure that characterizes functional Magnetic Resonance Imaging data, gaining power over parametric approaches

    Analysing multiple types of molecular profiles simultaneously: Connecting the needles in the haystack

    Get PDF
    Background: It has been shown that a random-effects framework can be used to test the association between a gene's expression level and the number of DNA copies of a set of genes. This gene-set modelling framework was later applied to find associations between mRNA expression and microRNA expression, by defining the gene sets using target prediction information. Methods and results: Here, we extend the model introduced by Menezes et al. 2009 to consider the effect of not just copy number, but also of other molecular profiles such as methylation changes and loss-of-heterozigosity (LOH), on gene expression levels. We will consider again sets of measurements, to improve robustness of results and increase the power to find associations. Our approach can be used genome-wide to find associations and yields a test to help separate true associations from noise. We apply our method to colon and to breast cancer samples, for which genome-wide copy number, methylation and gene expression profiles are available. Our findings include interesting gene expression-regulating mechanisms, which may involve only one of copy number or methylation, or both for the same samples. We even are able to find effects due to different molecular mechanisms in different samples. Conclusions: Our method can equally well be applied to cases where other types of molecular (high-dimensional) data are collected, such as LOH, SNP genotype and microRNA expression data. Computationally efficient, it represents a flexible and powerful tool to study associations between high-dimensional datasets. The method is freely available via the SIM BioConductor package

    Robust testing in generalized linear models by sign flipping score contributions

    Get PDF
    Generalized linear models are often misspecified because of overdispersion, heteroscedasticity and ignored nuisance variables. Existing quasi-likelihood methods for testing in misspecified models often do not provide satisfactory type I error rate control. We provide a novel semiparametric test, based on sign flipping individual score contributions. The parameter tested is allowed to be multi-dimensional and even high dimensional. Our test is often robust against the mentioned forms of misspecification and provides better type I error control than its competitors. When nuisance parameters are estimated, our basic test becomes conservative. We show how to take nuisance estimation into account to obtain an asymptotically exact test. Our proposed test is asymptotically equivalent to its parametric counterpart.Development and application of statistical models for medical scientific researc

    A comparative study on gene-set analysis methods for assessing differential expression associated with the survival phenotype

    Get PDF
    Abstract Background Many gene-set analysis methods have been previously proposed and compared through simulation studies and analysis of real datasets for binary phenotypes. We focused on the survival phenotype and compared the performances of Gene Set Enrichment Analysis (GSEA), Global Test (GT), Wald-type Test (WT) and Global Boost Test (GBST) methods in a simulation study and on two ovarian cancer data sets. We considered two versions of GSEA by allowing different weights: GSEA1 uses equal weights, yielding results similar to the Kolmogorov-Smirnov test; while GSEA2's weights are based on the correlation between genes and the phenotype. Results We compared GSEA1, GSEA2, GT, WT and GBST in a simulation study with various settings for the correlation structure of the genes and the association parameter between the survival outcome and the genes. Simulation results indicated that GT, WT and GBST consistently have higher power than GSEA1 and GSEA2 across all scenarios. However, the power of the five tests depends on the combination of correlation structure and association parameter. For the ovarian cancer data set, using the FDR threshold of q Conclusion Simulation studies and a real data example indicate that GT, WT and GBST tend to have high power, whereas GSEA1 and GSEA2 have lower power. We also found that the power of the five tests is much higher when genes are correlated than when genes are independent, when survival is positively associated with genes. It seems that there is a synergistic effect in detecting significant gene sets when significant genes have within-class correlation and the association between survival and genes is positive or negative (i.e., one-direction correlation).</p

    Does pathway analysis make it easier for common variants to tag rare ones?

    Get PDF
    Analyzing sequencing data is difficult because of the low frequency of rare variants, which may result in low power to detect associations. We consider pathway analysis to detect multiple common and rare variants jointly and to investigate whether analysis at the pathway level provides an alternative strategy for identifying susceptibility genes. Available pathway analysis methods for data from genome-wide association studies might not be efficient because these methods are designed to detect common variants. Here, we investigate the performance of several existing pathway analysis methods for sequencing data. In particular, we consider the global test, which does not consider linkage disequilibrium between the variants in a gene. We improve the performance of the global test by assigning larger weights to rare variants, as proposed in the weighted-sum approach. Our conclusion is that straightforward application of pathway analysis is not satisfactory; hence, when common and rare variants are jointly analyzed, larger weights should be assigned to rare variants

    ProbCD: enrichment analysis accounting for categorization uncertainty

    Get PDF
    As in many other areas of science, systems biology makes extensive use of statistical association and significance estimates in contingency tables, a type of categorical data analysis known in this field as enrichment (also over-representation or enhancement) analysis. In spite of efforts to create probabilistic annotations, especially in the Gene Ontology context, or to deal with uncertainty in high throughput-based datasets, current enrichment methods largely ignore this probabilistic information since they are mainly based on variants of the Fisher Exact Test. We developed an open-source R package to deal with probabilistic categorical data analysis, ProbCD, that does not require a static contingency table. The contingency table for&#xd;&#xa;the enrichment problem is built using the expectation of a Bernoulli Scheme stochastic process given the categorization probabilities. An on-line interface was created to allow usage by non-programmers and is available at: http://xerad.systemsbiology.net/ProbCD/. We present an analysis framework and software tools to address the issue of uncertainty in categorical data analysis. In particular, concerning the enrichment analysis, ProbCD can accommodate: (i) the stochastic nature of the high-throughput experimental techniques and (ii) probabilistic gene annotation

    All-Resolutions Inference for brain imaging

    Get PDF
    Development and application of statistical models for medical scientific researc
    corecore