144 research outputs found

    A strengthening of rational closure in DLs: reasoning about multiple aspects

    Full text link
    We propose a logical analysis of the concept of typicality, central in human cognition (Rosch,1978). We start from a previously proposed extension of the basic Description Logic ALC (a computationally tractable fragment of First Order Logic, used to represent concept inclusions and ontologies) with a typicality operator T that allows to consistently represent the attribution to classes of individuals of properties with exceptions (as in the classic example (i) typical birds fly, (ii) penguins are birds but (iii) typical penguins don't fly). We then strengthen this extension in order to separately reason about the typicality with respect to different aspects (e.g., flying, having nice feather: in the previous example, penguins may not inherit the property of flying, for which they are exceptional, but can nonetheless inherit other properties, such as having nice feather)

    Reasoning about exceptions in ontologies: from the lexicographic closure to the skeptical closure

    Full text link
    Reasoning about exceptions in ontologies is nowadays one of the challenges the description logics community is facing. The paper describes a preferential approach for dealing with exceptions in Description Logics, based on the rational closure. The rational closure has the merit of providing a simple and efficient approach for reasoning with exceptions, but it does not allow independent handling of the inheritance of different defeasible properties of concepts. In this work we outline a possible solution to this problem by introducing a variant of the lexicographical closure, that we call skeptical closure, which requires to construct a single base. We develop a bi-preference semantics semantics for defining a characterization of the skeptical closure

    A reconstruction of the multipreference closure

    Full text link
    The paper describes a preferential approach for dealing with exceptions in KLM preferential logics, based on the rational closure. It is well known that the rational closure does not allow an independent handling of the inheritance of different defeasible properties of concepts. Several solutions have been proposed to face this problem and the lexicographic closure is the most notable one. In this work, we consider an alternative closure construction, called the Multi Preference closure (MP-closure), that has been first considered for reasoning with exceptions in DLs. Here, we reconstruct the notion of MP-closure in the propositional case and we show that it is a natural variant of Lehmann's lexicographic closure. Abandoning Maximal Entropy (an alternative route already considered but not explored by Lehmann) leads to a construction which exploits a different lexicographic ordering w.r.t. the lexicographic closure, and determines a preferential consequence relation rather than a rational consequence relation. We show that, building on the MP-closure semantics, rationality can be recovered, at least from the semantic point of view, resulting in a rational consequence relation which is stronger than the rational closure, but incomparable with the lexicographic closure. We also show that the MP-closure is stronger than the Relevant Closure.Comment: 57 page

    A Conditional Logic for Iterated Belief Revision

    Get PDF
    In this paper we (Laura Giordano, Nicola Olivetti and myself) propose a conditional logic to represent iterated belief revision systems. We propose a set of postulates for belief revision which are a small variant of Darwiche and Pearl's ones.The resulting conditional logic has a standard semantics in terms of selection function models, and provides a natural representation of epistemic states. A Representation Theorem establishes a correspondence between iterated belief revision systems and conditional models. Our Representation Theorem does not entail Gärdenfors' Triviality Result
    • …
    corecore