59 research outputs found

    Global Epidemiology of Tuberculosis

    Get PDF
    AbstractTuberculosis (TB) was the underlying cause of 1.3 million deaths among human immunodeficiency virus (HIV)-negative people in 2016, exceeding the global number of HIV/acquired immune deficiency syndrome (AIDS) deaths. In addition, TB was a contributing cause of 374,000 HIV deaths. Despite the success of chemotherapy over the past seven decades, TB is the top infectious killer globally. In 2016, 10.4 million new cases arose, a number that has remained stable since the beginning of the 21th century, frustrating public health experts tasked to design and implement interventions to reduce the burden of TB disease worldwide. Ambitious targets for reductions in the epidemiological burden of TB have been set within the context of the Sustainable Development Goals (SDGs) and the End TB Strategy. Achieving these targets is the focus of national and international efforts, and demonstrating whether or not they are achieved is of major importance to guide future and sustainable investments. This article reviews epidemiological facts about TB, trends in the magnitude of the burden of TB and factors contributing to it, and the effectiveness of the public health response

    Dengue and Dengue Haemorrhagic Fever in French Polynesia-Current Situation

    Get PDF
    All four dengue virus serotypes have occurred in French Polynesia. The first epidemic of dengue on Tahiti island of known serotype (dengue 1) occurred in 1944 as part of the Pacific-wide spread of the disease during World War II. The next outbreak of dengue took place in 1964 and was the result of the introduction of dengue 3 virus. With the increase in air travel by humans, dengue has occurred as successive epidemics, especially between 1969 and 1979 with each epidemic involving a different serotype. Each time, the epidemic serotype replaced the unique endemic serotype that had been transmitted during the preceeding interepidemic period: dengue type 3 in 1969, dengue 2 in 1971, dengue 1 in 1975-1976 and dengue 4 in 1979. With the exception of the dengue 2 epidemic, during which severe haemorrhagic cases and several deaths were observed on Tahiti on 1971, cases of dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS) were not common. Following a long inter-epidemic period involving a low transmission of dengue 4, two back-to-back epidemics of dengue 1 and dengue 3 took place during 1988-1989. Of great interest was the occurrence of DHF/DSS in the latter epidemic (11 fatalities) while mildness characterized the former. Surveillance of both epidemics involved clinically and laboratory-based systems. Public health control measures were instituted. These viruses were throughoutly spread in the Pacific region with varying degrees of disease severity. Molecular epidemiology studies provided new information on geographic distribution, origin, evolution and strain variation among dengue viruses

    Implementing the Global Plan to Stop TB, 2011–2015 – Optimizing Allocations and the Global Fund’s Contribution: A Scenario Projections Study

    Get PDF
    CITATION: Korenromp, E. L. et al. 2012. Implementing the Global Plan to Stop TB, 2011-2015 - optimizing allocations and the Global Fund's contributions : a scenario projections study. PLoS ONE, 7(6): e38816, doi:10.1371/journal.pone.0038816.The original publication is available at http://journals.plos.org/plosoneBackground: The Global Plan to Stop TB estimates funding required in low- and middle-income countries to achieve TB control targets set by the Stop TB Partnership within the context of the Millennium Development Goals. We estimate the contribution and impact of Global Fund investments under various scenarios of allocations across interventions and regions. Methodology/Principal Findings: Using Global Plan assumptions on expected cases and mortality, we estimate treatment costs and mortality impact for diagnosis and treatment for drug-sensitive and multidrug-resistant TB (MDR-TB), including antiretroviral treatment (ART) during DOTS for HIV-co-infected patients, for four country groups, overall and for the Global Fund investments. In 2015, China and India account for 24% of funding need, Eastern Europe and Central Asia (EECA) for 33%, sub-Saharan Africa (SSA) for 20%, and other low- and middle-income countries for 24%. Scale-up of MDR-TB treatment, especially in EECA, drives an increasing global TB funding need – an essential investment to contain the mortality burden associated with MDR-TB and future disease costs. Funding needs rise fastest in SSA, reflecting increasing coverage need of improved TB/HIV management, which saves most lives per dollar spent in the short term. The Global Fund is expected to finance 8–12% of Global Plan implementation costs annually. Lives saved through Global Fund TB support within the available funding envelope could increase 37% if allocations shifted from current regional demand patterns to a prioritized scale-up of improved TB/HIV treatment and secondly DOTS, both mainly in Africa − with EECA region, which has disproportionately high per-patient costs, funded from alternative resources. Conclusions/Significance: These findings, alongside country funding gaps, domestic funding and implementation capacity and equity considerations, should inform strategies and policies for international donors, national governments and disease control programs to implement a more optimal investment approach focusing on highest-impact populations and interventions.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038816Publisher's versio

    End TB strategy: the need to reduce risk inequalities

    Get PDF
    Background Diseases occur in populations whose individuals differ in essential characteristics, such as exposure to the causative agent, susceptibility given exposure, and infectiousness upon infection in the case of infectious diseases. Discussion Concepts developed in demography more than 30 years ago assert that variability between individuals affects substantially the estimation of overall population risk from disease incidence data. Methods that ignore individual heterogeneity tend to underestimate overall risk and lead to overoptimistic expectations for control. Concerned that this phenomenon is frequently overlooked in epidemiology, here we feature its significance for interpreting global data on human tuberculosis and predicting the impact of control measures. Summary We show that population-wide interventions have the greatest impact in populations where all individuals face an equal risk. Lowering variability in risk has great potential to increase the impact of interventions. Reducing inequality, therefore, empowers health interventions, which in turn improves health, further reducing inequality, in a virtuous circle

    The impact of social protection and poverty elimination on global tuberculosis incidence: a statistical modelling analysis of Sustainable Development Goal 1.

    Get PDF
    BACKGROUND: The End TB Strategy and the Sustainable Development Goals (SDGs) are intimately linked by their common targets and approaches. SDG 1 aims to end extreme poverty and expand social protection coverage by 2030. Achievement of SDG 1 is likely to affect the tuberculosis epidemic through a range of pathways. We estimate the reduction in global tuberculosis incidence that could be obtained by reaching SDG 1. METHODS: We developed a conceptual framework linking key indicators of SDG 1 progress to tuberculosis incidence via well described risk factor pathways and populated it with data from the SDG data repository and the WHO tuberculosis database for 192 countries. Correlations and mediation analyses informed the strength of the association between the SDG 1 subtargets and tuberculosis incidence, resulting in a simplified framework for modelling. The simplified framework linked key indicators for SDG 1 directly to tuberculosis incidence. We applied an exponential decay model based on linear associations between SDG 1 indicators and tuberculosis incidence to estimate tuberculosis incidence in 2035. FINDINGS: Ending extreme poverty resulted in a reduction in global incidence of tuberculosis of 33·4% (95% credible interval 15·5-44·5) by 2035 and expanding social protection coverage resulted in a reduction in incidence of 76·1% (45·2-89·9) by 2035; both pathways together resulted in a reduction in incidence of 84·3% (54·7-94·9). INTERPRETATION: Full achievement of SDG 1 could have a substantial effect on the global burden of tuberculosis. Cross-sectoral approaches that promote poverty reduction and social protection expansion will be crucial complements to health interventions, accelerating progress towards the End TB targets. FUNDING: World Health Organization

    Genetic sequencing for surveillance of drug resistance in tuberculosis in highly endemic countries: A multi-country population-based surveillance study

    Get PDF
    Background: In many countries, regular monitoring of the emergence of resistance to anti-tuberculosis drugs is hampered by the limitations of phenotypic testing for drug susceptibility. We therefore evaluated the use of genetic sequencing for surveillance of drugresistance in tuberculosis.Methods: Population-level surveys were done in hospitals and clinics in seven countries (Azerbaijan, Bangladesh, Belarus, Pakistan, Philippines, South Africa, and Ukraine) to evaluate the use of genetic sequencing to estimate the resistance of Mycobacterium tuberculosisisolates to rifampicin, isoniazid, ofloxacin, moxifloxacin, pyrazinamide, kanamycin, amikacin, and capreomycin. For each drug, we assessed the accuracy of genetic sequencing by a comparison of the adjusted prevalence of resistance, measured by genetic sequencing, with the true prevalence of resistance, determined by phenotypic testing.Findings: Isolates were taken from 7094 patients with tuberculosis who were enrolled in the study between November, 2009, and May, 2014. In all tuberculosis cases, the overall pooled sensitivity values for predicting resistance by genetic sequencing were 91% (95% CI 87-94) for rpoB (rifampicin resistance), 86% (74-93) for katG, inhA, and fabG promoter combined (isoniazid resistance), 54% (39-68) for pncA (pyrazinamide resistance), 85% (77-91) for gyrA and gyrB combined (ofloxacin resistance), and 88% (81-92) for gyrA and gyrB combined (moxifloxacin resistance). For nearly all drugs and in most settings, there was a large overlap in the estimated prevalence of drug resistanceby genetic sequencing and the estimated prevalence by phenotypic testing.Interpretation: Genetic sequencing can be a valuable tool for surveillance of drug resistance, providing new opportunities to monitor drug resistance in tuberculosis in resource-poor countries. Before its widespread adoption for surveillance purposes, there is a need to standardise DNA extraction methods, recording and reporting nomenclature, and data interpretation.Findings: Bill & Melinda Gates Foundation, United States Agency for International Development, Global Alliance for Tuberculosis DrugDevelopment

    Implementing the global plan to stop TB, 2011-2015 - optimizing allocations and the global fund's contribution: A scenario projections study

    Get PDF
    Background: The Global Plan to Stop TB estimates funding required in low- and middle-income countries to achieve TB control targets set by the Stop TB Partnership within the context of the Millennium Development Goals. We estimate the contribution and impact of Global Fund investments under various scenarios of allocations across interventions and regions. Methodology/Principal Findings: Using Global Plan assumptions on expected cases and mortality, we estimate treatment costs and mortality impact for diagnosis and treatment for drug-sensitive and multidrug-resistant TB (MDR-TB), including antiretroviral treatment (ART) during DOTS for HIV-co-infected patients, for four country groups, overall and for the Global Fund investments. In 2015, China and India account for 24% of funding need, Eastern Europe and Central Asia (EECA) for 33%, sub-Saharan Africa (SSA) for 20%, and other low- and middle-income countries for 24%. Scale-up of MDR-TB treatment, especially in EECA, drives an increasing global TB funding need - an essential investment to contain the mortality burden associated with MDR-TB and future disease costs. Funding needs rise fastest in SSA, reflecting increasing coverage need of improved TB/HIV management, which saves most lives per dollar spent in the short term. The Global Fund is expected to finance 8-12% of Global Plan implementation costs annually. Lives saved through Global Fund TB support within the available funding envelope could increase 37% if allocations shifted from current regional demand patterns to a prioritized scale-up of improved TB/HIV treatment and secondly DOTS, both mainly in Africa - with EECA region, which has disproportionately high per-patient costs, funded from alternative resources. Conclusions/Significance: These findings, alongside country funding gaps, domestic funding and implementation capacity and equity considerations, should inform strategies and policies for international donors, national governments and disease control programs to implement a more optimal investment approach focusing on highest-impact populations and interventions

    End TB strategy: the need to reduce risk inequalities.

    Get PDF
    BACKGROUND: Diseases occur in populations whose individuals differ in essential characteristics, such as exposure to the causative agent, susceptibility given exposure, and infectiousness upon infection in the case of infectious diseases. DISCUSSION: Concepts developed in demography more than 30 years ago assert that variability between individuals affects substantially the estimation of overall population risk from disease incidence data. Methods that ignore individual heterogeneity tend to underestimate overall risk and lead to overoptimistic expectations for control. Concerned that this phenomenon is frequently overlooked in epidemiology, here we feature its significance for interpreting global data on human tuberculosis and predicting the impact of control measures. We show that population-wide interventions have the greatest impact in populations where all individuals face an equal risk. Lowering variability in risk has great potential to increase the impact of interventions. Reducing inequality, therefore, empowers health interventions, which in turn improves health, further reducing inequality, in a virtuous circle

    Prevalence and genetic profiles of isoniazid resistance in tuberculosis patients: A multicountry analysis of cross-sectional data.

    Get PDF
    BACKGROUND: The surveillance of drug resistance among tuberculosis (TB) patients is central to combatting the global TB epidemic and preventing the spread of antimicrobial resistance. Isoniazid and rifampicin are two of the most powerful first-line anti-TB medicines, and resistance to either of them increases the risk of treatment failure, relapse, or acquisition of resistance to other drugs. The global prevalence of rifampicin resistance is well documented, occurring in 3.4% (95% CI 2.5%-4.4%) of new TB patients and 18% (95% CI 7.6%-31%) of previously treated TB patients in 2018, whereas the prevalence of isoniazid resistance at global and regional levels is less understood. In 2018, the World Health Organization (WHO) recommended a modified 6-month treatment regimen for people with isoniazid-resistant, rifampicin-susceptible TB (Hr-TB), which includes rifampicin, pyrazinamide, ethambutol, and levofloxacin. We estimated the global prevalence of Hr-TB among TB patients and investigated associated phenotypic and genotypic drug resistance patterns. METHODS AND FINDINGS: Aggregated drug resistance data reported to WHO from either routine continuous surveillance or nationally representative periodic surveys of TB patients for the period 2003-2017 were reviewed. Isoniazid data were available from 156 countries or territories for 211,753 patients. Among these, the global prevalence of Hr-TB was 7.4% (95% CI 6.5%-8.4%) among new TB patients and 11.4% (95% CI 9.4%-13.4%) among previously treated TB patients. Additional data on pyrazinamide and levofloxacin resistance were available from 6 countries (Azerbaijan, Bangladesh, Belarus, Pakistan, the Philippines, and South Africa). There were no cases of resistance to both pyrazinamide and levofloxacin among Hr-TB patients, except for the Philippines (1.8%, 95% CI 0.2-6.4) and Belarus (5.3%, 95% CI 0.1-26.0). Sequencing data for all genomic regions involved in isoniazid resistance were available for 4,563 patients. Among the 1,174 isolates that were resistant by either phenotypic testing or sequencing, 78.6% (95% CI 76.1%-80.9%) had resistance-conferring mutations in the katG gene and 14.6% (95% CI 12.7%-16.8%) in both katG and the inhA promoter region. For 6.8% (95% CI 5.4%-8.4%) of patients, mutations occurred in the inhA promoter alone, for whom an increased dose of isoniazid may be considered. The main limitations of this study are that most analyses were performed at the national rather than individual patient level and that the quality of laboratory testing may vary between countries. CONCLUSIONS: In this study, the prevalence of Hr-TB among TB patients was higher than the prevalence of rifampicin resistance globally. Many patients with Hr-TB would be missed by current diagnostic algorithms driven by rifampicin testing, highlighting the need for new rapid molecular technologies to ensure access to appropriate treatment and care. The low prevalence of resistance to pyrazinamide and fluoroquinolones among patients with Hr-TB provides further justification for the recommended modified treatment regimen
    • …
    corecore