1,897 research outputs found
The Priming Effects of Polling Location on Ballot Initiative Voting Decisions
Do the physical settings in which a voter casts their ballot affect their vote choices? Every state uses a variety of polling locations for the administration of election: churches, schools, libraries, fire stations, and etcetera. The literature on priming effects and voting is massive, but very little research examines the impact of the venue in which a ballot is cast has on voters’ decisions. In this study I argue that polling venues situated on church, school, or veteran’s association property influences the proportion of votes cast in favor of ballot measures related to each institution. I test these hypotheses using precinct level election results and population data from California’s 2008 general election and find results supporting, or suggesting, such a relationship
Recommended from our members
How companies can switch customers to the use of low cost channels without risking the customer relationship
On-the-fly memory compression for multibody algorithms.
Memory and bandwidth demands challenge developers of particle-based codes that have to scale on new architectures, as the growth of concurrency outperforms improvements in memory access facilities, as the memory per core tends to stagnate, and as communication networks cannot increase bandwidth arbitrary. We propose to analyse each particle of such a code to find out whether a hierarchical data representation storing data with reduced precision caps the memory demands without exceeding given error bounds. For admissible candidates, we perform this compression and thus reduce the pressure on the memory subsystem, lower the total memory footprint and reduce the data to be exchanged via MPI. Notably, our analysis and transformation changes the data compression dynamically, i.e. the choice of data format follows the solution characteristics, and it does not require us to alter the core simulation code
Response to combination therapy with interferon alfa-2a and ribavirin in chronic hepatitis C according to a TNF-alpha promoter polymorphism
Background. Tumor necrosis factor-alpha (TNF-alpha) is involved in the pathogenesis of chronic active hepatitis C. Polymorphisms in the promoter region of the TNF-alpha gene can alter the TNF-alpha expression and modify the host immune response. The present study aimed at the correlation of the G308A TNF-alpha polymorphism with the response to antiviral combination therapy in chronic hepatitis C. Patients and Methods: 62 patients with HCV and 119 healthy unrelated controls were genotyped for the G308A TNF-alpha promoter polymorphism. The patients received 3 x 3 million units of interferon alfa-2a and 1,0001,200 mg ribavirin daily according to their body weight. A response was defined as absence of HCV-RNA and normalization of S-ALT after 6 months of combination therapy. Results:With respect to the allele and genotype frequency, a significant difference was not observed between controls and patients with chronic hepatitis C. Furthermore, such a difference was also not observed if responders and non-responders to antiviral therapy were compared. Conclusions: The promoter polymorphism of the TNF-alpha gene investigated herein is equally distributed in healthy individuals and patients with hepatitis C and does not seem to predict the response to therapy with interferon alfa-2a and ribavirin. Copyright (C) 2003 S. Karger AG, Basel
Spaced training enhances memory and prefrontal ensemble stability in mice
It is commonly acknowledged that memory is substantially improved when learning is distributed over time, an effect called the "spacing effect". So far it has not been studied how spaced learning affects the neuronal ensembles presumably underlying memory. In the present study, we investigate whether trial spacing increases the stability or size of neuronal ensembles. Mice were trained in the "everyday memory"task, an appetitive, naturalistic, delayed matching-to-place task. Spacing trials by 60 min produced more robust memories than training with shorter or longer intervals. c-Fos labeling and chemogenetic inactivation established the involvement of the dorsomedial prefrontal cortex (dmPFC) in successful memory storage. In vivo calcium imaging of excitatory dmPFC neurons revealed that longer trial spacing increased the similarity of the population activity pattern on subsequent encoding trials and upon retrieval. Conversely, trial spacing did not affect the size of the total neuronal ensemble or the size of subpopulations dedicated to specific task-related behaviors and events. Thus, spaced learning promotes reactivation of prefrontal neuronal ensembles processing episodic-like memories
Buried dislocation networks designed to organize the growth of III-V semiconductor nanostructures
We first report a detailed transmission electron microscopy study of
dislocation networks (DNs) formed at shallowly buried interfaces obtained by
bonding two GaAs crystals between which we establish in a controlled manner a
twist and a tilt around a k110l direction. For large enough twists, the DN
consists of a twodimensional network of screw dislocations accommodating mainly
the twist and of a one-dimensional network of mixed dislocations accommodating
mainly the tilt. We show that in addition the mixed dislocations accommodate
part of the twist and we observe and explain slight unexpected disorientations
of the screw dislocations with respect to the k110l directions. By performing a
quantitative analysis of the whole DN, we propose a coherent interpretation of
these observations which also provides data inaccessible by direct experiments.
When the twist is small enough, one screw subnetwork vanishes. The surface
strain field induced by such DNs has been used to pilot the lateral ordering of
GaAs and InGaAs nanostructures during metal-organic vapor phase epitaxy. We
prove that the dimensions and orientations of the nanostructures are correlated
with those of the cells of the underlying DN and explain how the interface
dislocation structure governs the formation of the nanostructures
Debunking the myth that poor whites vote against their interests for Republicans
Recent years have seen the rise of the idea that poor whites in America have developed a tendency to vote for Republicans, who in general do not have their best interests in mind. Using National Election Survey data, Sean Richey, J. Benjamin Taylor, Jeffrey M. Glas and Junyan Zhu take a close look at this idea of ‘incorrect voting’, and find that poor whites actually tend to vote for Democrats – who do better represent their interests – around 75 percent of the time. They also comment that when poor whites do vote against their interests, this tends to be third party candidates, rather than Republicans
- …