183 research outputs found
Breath of Life: Heart Disease Link to Developmental Hypoxia.
Heart disease remains one of the greatest killers. In addition to genetics and traditional lifestyle risk factors, we now understand that adverse conditions during pregnancy can also increase susceptibility to cardiovascular disease in the offspring. Therefore, the mechanisms by which this occurs and possible preventative therapies are of significant contemporary interest to the cardiovascular community. A common suboptimal pregnancy condition is a sustained reduction in fetal oxygenation. Chronic fetal hypoxia results from any pregnancy with increased placental vascular resistance, such as in preeclampsia, placental infection, or maternal obesity. Chronic fetal hypoxia may also arise during pregnancy at high altitude or because of maternal respiratory disease. This article reviews the short- and long-term effects of hypoxia on the fetal cardiovascular system, and the importance of chronic fetal hypoxia in triggering a developmental origin of future heart disease in the adult progeny. The work summarizes evidence derived from human studies as well as from rodent, avian, and ovine models. There is a focus on the discovery of the molecular link between prenatal hypoxia, oxidative stress, and increased cardiovascular risk in adult offspring. Discussion of mitochondria-targeted antioxidant therapy offers potential targets for clinical intervention in human pregnancy complicated by chronic fetal hypoxia.The work is supported by The British Heart Foundation (RG/17/8/32924) and the Medical Research Council UK (MR/V03362X/1)
Impact of Chronic Fetal Hypoxia and Inflammation on Cardiac Pacemaker Cell Development.
Chronic fetal hypoxia and infection are examples of adverse conditions during complicated pregnancy, which impact cardiac myogenesis and increase the lifetime risk of heart disease. However, the effects that chronic hypoxic or inflammatory environments exert on cardiac pacemaker cells are poorly understood. Here, we review the current evidence and novel avenues of bench-to-bed research in this field of perinatal cardiogenesis as well as its translational significance for early detection of future risk for cardiovascular disease
Recommended from our members
Combined Antioxidant and Glucocorticoid Therapy for Safer Treatment of Preterm Birth.
Ante- and postnatal glucocorticoid therapy reduces morbidity and mortality in the preterm infant, and it is therefore one of the best examples of the successful translation of basic experimental science into human clinical practice. However, accruing evidence derived from human clinical studies and from experimental studies in animal models raise serious concerns about potential long-term adverse effects of treatment on growth and neurological and cardiovascular function in the offspring. This review explores whether combined antioxidant and glucocorticoid therapy may be safer than glucocorticoid therapy alone for the treatment of preterm birth.The British Heart Foundation and The Wellcome Trus
Working towards precision medicine in developmental programming
The gene-environment interaction before birth is just us, if not more, important than the gene-lifestyle interaction after birth in setting a risk of disease in later life through a process known as developmental programming (1). The best evidence in humans to support developmental programming comes from studies of obese women who have fallen pregnant before and after having bariatric surgery (2). These studies show that siblings born before the surgery have an increased risk of cardiometabolic disease compared to those born after. Therefore, such studies underscore that alterations in the environment at critical periods of intrauterine development even within the same womb can directly influences long-term cardiovascular health in offspring of the same family. Consequently, there has been an exponential growth of studies in this field of developmental programming aiming to identify underlying mechanisms and thereby treatment, most recently focussed on improving precision medicine by applying basic principles of personalised medicine to intrauterine therapy (3). Two relevant examples are provided by studies aiming to improve organelle-targeted therapy (4-6) and by the growing awareness that the sex of the offspring and of its placenta ought to be included as biological variables into experimental design and analysis when studying vertebrate animals and humans (7-9).The Lister Institute for Preventive Medicin
The fetal brain sparing response to hypoxia: physiological mechanisms.
How the fetus withstands an environment of reduced oxygenation during life in the womb has been a vibrant area of research since this field was introduced by Joseph Barcroft, a century ago. Studies spanning five decades have since used the chronically instrumented fetal sheep preparation to investigate the fetal compensatory responses to hypoxia. This defence is contingent on the fetal cardiovascular system, which in late gestation adopts strategies to decrease oxygen consumption and redistribute the cardiac output away from peripheral vascular beds and towards essential circulations, such as those perfusing the brain. The introduction of simultaneous measurement of blood flow in the fetal carotid and femoral circulations by ultrasonic transducers has permitted investigation of the dynamics of the fetal brain sparing response for the first time. Now we know that major components of fetal brain sparing during acute hypoxia are triggered exclusively by a carotid chemoreflex and that they are modified by endocrine agents and the recently discovered vascular oxidant tone. The latter is determined by the interaction between nitric oxide and reactive oxygen species. The fetal brain sparing response matures as the fetus approaches term, in association with the prepartum increase in fetal plasma cortisol, and treatment of the preterm fetus with clinically relevant doses of synthetic steroids mimics this maturation. Despite intense interest into how the fetal brain sparing response may be affected by adverse intrauterine conditions, this area of research has been comparatively scant, but it is likely to take centre stage in the near future.Dino Giussani is supported by the British Heart Foundation, The Biotechnology and Biological Sciences Research Council, The Royal Society, The Wellcome Trust, Action Medical Research and the Isaac Newton Trust. I am grateful to past and present members of my group and Professor Abigail Fowden and Dr Caroline Shaw for insightful discussion.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1113/JP27109
First evidence that intrinsic fetal heart rate variability exists and is affected by hypoxic pregnancy.
KEY POINTS: We introduce a technique to test whether intrinsic fetal heart rate variability (iFHRV) exists and we show the utility of the technique by testing the hypothesis that iFHRV is affected by chronic fetal hypoxia, one of the most common adverse outcomes of human pregnancy complicated by fetal growth restriction. Using an established late gestation ovine model of fetal development under chronic hypoxic conditions, we identify iFHRV in isolated fetal hearts and show that it is markedly affected by hypoxic pregnancy. Therefore, the isolated fetal heart has intrinsic variability and carries a memory of adverse intrauterine conditions experienced during the last third of pregnancy. ABSTRACT: Fetal heart rate variability (FHRV) emerges from influences of the autonomic nervous system, fetal body and breathing movements, and from baroreflex and circadian processes. We tested whether intrinsic heart rate variability (iHRV), devoid of any external influences, exists in the fetal period and whether it is affected by chronic fetal hypoxia. Chronically catheterized ewes carrying male singleton fetuses were exposed to normoxia (n = 6) or hypoxia (10% inspired O2 , n = 9) for the last third of gestation (105-138 days of gestation (dG); term ∼145 dG) in isobaric chambers. At 138 dG, isolated hearts were studied using a Langendorff preparation. We calculated basal intrinsic FHRV (iFHRV) indices reflecting iFHRV's variability, predictability, temporal symmetry, fractality and chaotic behaviour, from the systolic peaks within 15 min segments in each heart. Significance was assumed at P < 0.05. Hearts of fetuses isolated from hypoxic pregnancy showed approximately 4-fold increases in the Grid transformation as well as the AND similarity index (sgridAND) and a 4-fold reduction in the scale-dependent Lyapunov exponent slope. We also detected a 2-fold reduction in the Recurrence quantification analysis, percentage of laminarity (pL) and recurrences, maximum and average diagonal line (dlmax, dlmean) and the Multiscale time irreversibility asymmetry index. The iHRV measures dlmax, dlmean, pL and sgridAND correlated with left ventricular end-diastolic pressure across both groups (average R2  = 0.38 ± 0.03). This is the first evidence that iHRV originates in fetal life and that chronic fetal hypoxia significantly alters it. Isolated fetal hearts from hypoxic pregnancy exhibit a time scale-dependent higher complexity in iFHRV.British Heart Foundatio
Antioxidant treatment alters peripheral vascular dysfunction induced by postnatal glucocorticoid therapy in rats.
BACKGROUND: Postnatal glucocorticoid therapy in premature infants diminishes chronic lung disease, but it also increases the risk of hypertension in adulthood. Since glucocorticoid excess leads to overproduction of free radicals and endothelial dysfunction, this study tested the hypothesis that adverse effects on cardiovascular function of postnatal glucocorticoids are secondary to oxidative stress. Therefore, combined postnatal treatment of glucocorticoids with antioxidants may diminish unwanted effects. METHODOLOGY/PRINCIPAL FINDINGS: Male rat pups received a course of dexamethasone (Dex), or Dex with vitamins C and E (DexCE), on postnatal days 1-6 (P1-6). Controls received vehicle (Ctrl) or vehicle with vitamins (CtrlCE). At P21, femoral vascular reactivity was determined via wire myography. Dex, but not DexCE or CtrlCE, increased mortality relative to Ctrl (81.3 versus 96.9 versus 90.6 versus 100% survival, respectively; P<0.05). Constrictor responses to phenylephrine (PE) and thromboxane were enhanced in Dex relative to Ctrl (84.7+/-4.8 versus 67.5+/-5.7 and 132.7+/-4.9 versus 107.0+/-4.9% Kmax, respectively; P<0.05); effects that were diminished in DexCE (58.3+/-7.5 and 121.1+/-4.3% Kmax, respectively; P<0.05). Endothelium-dependent dilatation was depressed in Dex relative to Ctrl (115.3+/-11.9 versus 216.9+/-18.9, AUC; P<0.05); however, this effect was not restored in DexCE (68.3+/-8.3, AUC). Relative to Ctrl, CtrlCE alone diminished PE-induced constriction (43.4+/-3.7% Kmax) and the endothelium-dependent dilatation (74.7+/-8.7 AUC; P<0.05). CONCLUSIONS/SIGNIFICANCE: Treatment of newborn rats with dexamethasone has detrimental effects on survival and peripheral vasoconstrictor function. Coadministration of dexamethasone with antioxidant vitamins improves survival and partially restores vascular dysfunction. Antioxidant vitamins alone affect peripheral vascular function
Recommended from our members
Noninvasive Biomarkers for Cardiovascular Dysfunction Programmed in Male Offspring of Adverse Pregnancy.
[Figure: see text]
- …